Introduction: Due to the realistic colour, texture conservation and preservation of biomechanical properties, Thiel-embalming is becoming the main embalming procedure for clinical courses and research based on human cadaver material. The aim of this study is to establish a new procedure that allows advanced microdissection of small vessels and intraorganic nerves in Thiel-embalmed material.

Material And Methods/results: After a classical gross anatomical dissection, human hemipelves underwent repetitive application of 3 consecutive steps: (i) maceration with alloy of nitric acid and MiliQ water 1:10 for 24-48h. (ii) Immersion: the hemipelves were rinsed under tap water for 20-30min. and placed in a water bath for 1h. The nerves become more prominent due to the swelling and increased water content. (iii) microdissection under surgical microscope. To facilitate the organ visualization perfusion with polyurethane (Pu4ii, VasQtec, Switzerland) in red/blue for arteries/veins respectively has been performed.

Conclusion: By using the proposed procedure, we performed satisfactory microdissection on Thiel-embalmed samples. The combination with polyurethane vascular casting permits visualization of small arterioles and venules in a range of 20-25μm. The method is very suitable for demonstration of somatic and vegetative nerves. Branches of the sacral plexuses and autonomic nerves from the superior and inferior hypogastric plexus have been tracked up to the smallest intraorganic branches in a range of 12.5-15μm. In conclusion, the established combined procedure offers a new possibility for advanced microdissection, which will allow acquisition of clinically relevant information about organ specific micro- vascularization and innervation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aanat.2016.10.008DOI Listing

Publication Analysis

Top Keywords

advanced microdissection
8
procedure
5
combined maceration
4
maceration procedure
4
procedure permits
4
permits advanced
4
advanced microsurgical
4
microsurgical dissection
4
dissection thiel-embalmed
4
thiel-embalmed specimens
4

Similar Publications

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

Deciphering functional tumor-immune crosstalk through highly multiplexed imaging and deep visual proteomics.

Mol Cell

January 2025

Novo Nordisk Foundation Center for Protein Research, University of Copenhagen 2200, Copenhagen, Denmark; Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany. Electronic address:

Deciphering the intricate tumor-immune interactions within the microenvironment is crucial for advancing cancer immunotherapy. Here, we introduce mipDVP, an advanced approach integrating highly multiplexed imaging, single-cell laser microdissection, and sensitive mass spectrometry to spatially profile the proteomes of distinct cell populations in a human colorectal and tonsil cancer with high sensitivity. In a colorectal tumor-a representative cold tumor-we uncovered spatial compartmentalization of an immunosuppressive macrophage barrier that potentially impedes T cell infiltration.

View Article and Find Full Text PDF

ADAMTS4-Specific MR Peptide Probe for the Assessment of Atherosclerotic Plaque Burden in a Mouse Model.

Invest Radiol

January 2025

From the Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany (D.B.M., J.O.K., J.B., A.K., J.M., J.L.H., C.R., M.T., B.H., M.R.M.); Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany (D.B.M., J.O.K., J.B., A.K., L.C.A., M.R.M.); Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany (J.O.K.); Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing, Berlin, Germany (J.O.K., M.G.W.); Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany (A.K.); Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany (J.L.H.); Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (C.V., P.N., U.K.); Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany (A.L.); DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany (A.L.); and Division of Cardiology, Massachusetts General Hospital, Harvard University, Boston, MA (W.C.P.).

Introduction: Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.

View Article and Find Full Text PDF

: Uveal melanomas (UMs) are rare but often deadly malignancies that urgently require viable treatment options. UMs often exhibit tumour heterogeneity, with macroscopic and microscopic differences in morphology between different regions of the same tumour. However, to date, the clinical significance of this and how it may help guide personalised therapy have not been realised.

View Article and Find Full Text PDF

Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?

Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.

What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!