Localization of epileptogenic zone based on graph analysis of stereo-EEG.

Epilepsy Res

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Published: December 2016

Localization of the epileptogenic zone (EZ) is essential for the successful surgical treatment of medically intractable epilepsy. In the present study, stereo-EEG (SEEG) recordings were obtained from seven patients underwent presurgical evaluation for treatment of intractable epilepsy. Partial directed coherence (PDC) analysis was applied to construct peri-ictal effective connectivity networks. The graphic measures, in-degree, out-degree and betweenness centrality, were evaluated to localize the EZ. A receiver operating characteristic (ROC) analysis was used to quantify the localization accuracy. We found that the in-degree coincided well with the EZ identified by epileptologists' visual inspection in all seven patients who had a significant improvement in seizure outcomes, however, the other two measures were effective only in some cases. Furthermore, in all seven patients the electrode contact with the highest in-degree was always located within the EZ identified by epileptologists' visual inspection. These results indicate that the graph theory is an effective method to localize the EZ when suitable graphic measures were chosen. Furthermore, the in-degree was the most effective measure among the three graphic measures in localizing the EZ when the PDC method was used.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eplepsyres.2016.10.021DOI Listing

Publication Analysis

Top Keywords

graphic measures
12
localization epileptogenic
8
epileptogenic zone
8
intractable epilepsy
8
identified epileptologists'
8
epileptologists' visual
8
visual inspection
8
zone based
4
based graph
4
graph analysis
4

Similar Publications

The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.

View Article and Find Full Text PDF

Background: Measuring palliative care quality requires the application of evaluation methods to compare clinically meaningful groups of patients across different settings. Such protocols are currently lacking in Poland. The Australian Palliative Care Outcome Collaboration (PCOC) concept of Palliative phases precisely defines patients, enables episodes of care extraction for benchmarking and further assessment of service delivery.

View Article and Find Full Text PDF

Trapezoidal back projection for positron emission tomography reconstruction.

EJNMMI Phys

December 2024

Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary.

Background: In the back projection step of the 3D PET reconstruction, all Lines of Responses (LORs) that go through a given voxel need to be identified and included in an integral. The standard Monte Carlo solution to this task samples stochastically the surfaces of the detector crystals and the volume of the voxel to search for valid LORs. To get a low noise Monte Carlo estimate, the number of samples needs to be very high, making the computational cost of the projection significant.

View Article and Find Full Text PDF

Background And Objective: Dysfunction of the right ventricular outflow tract (RVOT) is a common long-term complication following surgical repair in patients with congenital heart disease. Transcatheter pulmonary valve implantation (TPVI) offers a viable alternative to surgical pulmonary valve replacement (SPVR) for treating pulmonary regurgitation but not all RVOT anatomies are suitable for TPVI. To identify a suitable landing zone (LZ) for TPVI, three-dimensional multiphase (4D) computed tomography (CT) is used to evaluate the size, shape, and dynamic behavior of the RVOT throughout the cardiac cycle.

View Article and Find Full Text PDF

A thorough understanding of surgical anatomy is essential for preparing and training medical students to become competent and skilled surgeons. While Virtual Reality (VR) has shown to be a suitable interaction paradigm for surgical training, traditional anatomical VR models often rely on simple labels and arrows pointing to relevant landmarks. Yet, studies have indicated that such visual settings could benefit from knowledge maps as such representations explicitly illustrate the conceptual connections between anatomical landmarks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!