Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reactive oxygen species (ROS)-mediated DNA adducts as well as DNA strand breaks are highly mutagenic leading to genomic instability and tumorigenesis. DNA damage repair pathways and oxidative stress response signaling have been proposed to be highly associated, but the underlying interaction remains unknown. In this study, we employed mutant strains lacking Rad51, the homolog of E. coli RecA recombinase, and Yap1 or Skn7, two major transcription factors responsive to ROS, to examine genetic interactions between double-strand break (DSB) repair proteins and cellular redox regulators in budding yeast Saccharomyces cerevisiae. Abnormal expression of YAP1 or SKN7 aggravated the mutation rate of rad51 mutants and their sensitivity to DSB- or ROS-generating reagents. Rad51 deficiency exacerbated genome instability in the presence of increased levels of ROS, and the accumulation of DSB lesions resulted in elevated intracellular ROS levels. Our findings suggest that evident crosstalk between DSB repair pathways and ROS signaling proteins contributes to cell survival and maintenance of genome integrity in response to genotoxic stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!