A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: Kinetics and bacterial community structure. | LitMetric

Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: Kinetics and bacterial community structure.

Water Res

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. Electronic address:

Published: January 2017

This study investigated the simultaneous removal of perchlorate and nitrate from aqueous solution in an up-flow sulfur autotrophic reduction reactor. A nitrate and perchlorate containing pollution solution was treated with a remarkable removal efficiency greater than 97%. The concentration of nitrate was 22.03 ± 1.07 mg-N/L coexisting with perchlorate either 21.87 ± 1.03 mg/L or 471.7 ± 50.3 μg/L, in this case the reactor could be operated at a hydraulic retention time (HRT) ranging from 12.00 h to 0.75 h. Half-order kinetics model fit the experimental data well; this indicates that diffusion in the biofilm was the limiting step. Perchlorate reduction required a longer reaction time than the coexisting nitrate, regardless of the perchlorate concentration. Sulfur (S) disproportionation was inhibited when nitrate was not completely removed; whereas it was accelerated when perchlorate decreased to low concentrations. This process therefore generated excessive sulfate and consumed much more alkalinity. High-throughput sequencing method was used to analyze bacterial community spatial distribution in the reactor under different operational conditions. The reduction of the two contaminants was accompanied by a decrease in biodiversity. The results indicated that Sulfuricella, Sulfuritalea Thiobacillus, and Sulfurimonas are effective DB (denitrification bacteria)/PRB (perchlorate reduction bacteria). The Chlorobaculum genus was the dominant bacteria associated with S disproportionation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2016.11.003DOI Listing

Publication Analysis

Top Keywords

perchlorate
8
perchlorate nitrate
8
bacterial community
8
nitrate perchlorate
8
perchlorate reduction
8
nitrate
6
reduction
5
simultaneous bio-autotrophic
4
bio-autotrophic reduction
4
reduction perchlorate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!