Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper proposes a hybrid intelligent method for multi-fault detection of rotating machinery, in which three methods, i.e. including the redundant second generation wavelet package transform (RSGWPT), the kernel principal component analysis (KPCA) and the twin support vector machine (TWSVM), are combined. Firstly, RSGWPT is used to extract feature vectors from representative statistical characteristics in the decomposition frequency band, and then the KPCA in the feature space is performed to reduce the dimension of features and to extract the dominant features for the following classification. Finally, a novel support vector machine, called twin support vector machine is used to construct a multi-class classifier. Inputting superior features to this classifier, the condition of the monitored machine component can be determined. Experimental results demonstrate that the proposed hybrid method is effective for multi-fault detection of rotating machinery. The TWSVM is also indicated that has better classification performance and faster convergence speed than the normal SVM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2016.11.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!