Isotherm charts for material selection and method development with molecularly imprinted polymers and other sorbents.

Talanta

Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellert ter 4., H-1111 Budapest, Hungary; MTA-BME Research Group of Technical Analytical Chemistry, Szent Gellert ter 4., H-1111 Budapest, Hungary. Electronic address:

Published: January 2017

A simple and efficient method is presented for assessing molecularly imprinted polymers (MIP) and other sorbents from the point of view of practical applications. The adsorption isotherms of the compounds, which need to be separated or detected in an application, are constructed from a small number of measured points on a log-log chart and then are compared graphically. Despite its simplicity and robustness this method reveals the information needed for optimal selection between MIPs and alternative sorbents. The design of separation or detection methods with MIPs is also supported by the proposed graphical isotherm comparison. Many experimental isotherms are presented supporting the proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2016.10.027DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
8
imprinted polymers
8
isotherm charts
4
charts material
4
material selection
4
method
4
selection method
4
method development
4
development molecularly
4
polymers sorbents
4

Similar Publications

A Review Study on Molecularly Imprinting Surface Plasmon Resonance Sensors for Food Analysis.

Biosensors (Basel)

November 2024

Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey.

Surface plasmon resonance (SPR) sensors have emerged as a powerful tool in biosensing applications due to their ability to provide sensitive and real-time detection of chemical and biological analytes. This review focuses on the development and application of molecularly imprinted polymer (MIP)-based SPR sensors for food analysis. By combining the high selectivity of molecular imprinting techniques with the sensitivity of SPR, these sensors offer significant advantages in detecting food contaminants and other target molecules.

View Article and Find Full Text PDF

Fabrication of bio-mimic nanozyme based on Mxene@AuNPs and molecular imprinted poly(thionine) films for creatinine detection.

Biosens Bioelectron

December 2024

Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea. Electronic address:

Creatinine (Ctn) is a biomarker for chronic kidney disease (CKD). In this study, a highly sensitive and specific detection method for Ctn based on a molecularly imprinted polymer (MIP) based electrochemical biosensor was developed. Mxene (Mx), which has high absorption properties, was modified using carbon screen-printed electrodes (SPCE).

View Article and Find Full Text PDF

A molecularly imprinted fluorescent aptasensor was designed for selective detection of quinine (Qn) based on dual functional monomers. In the sol-gel polymerization of molecularly imprinted polymers (MIPs), 3-aminopropyltriethoxysilane (APTES) and quinine aptamer (Apt) were employed as dual functional monomers, and Qn was the template molecule. Near-infrared carbon dots (RCDs) were used as fluorescence signal probe, and effectively avoided the interference of fluorescence emitted by Qn.

View Article and Find Full Text PDF

Selective extraction and determination of chlorpyrifos residues from aqueous samples using biochar-functionalized molecularly imprinted polymer combined with high-performance liquid chromatography.

J Chromatogr A

December 2024

College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; Laoshan Laboratory, Qingdao 266234, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China. Electronic address:

The concentration of chlorpyrifos (CPF) in aqueous samples was determined using a novel molecularly imprinted dispersive solid-phase extraction (MISPE) approach that was presented in this research. Using a non-covalent molecular imprinting technique, a biochar (BC)-functionalized molecularly imprinted polymers (MIPs) (BC-MIPs) was created. These MIPs were used in dispersive solid-phase extraction (DSPE) in conjunction with high-performance liquid chromatography with photodiode array detection (HPLC-PDA) to detect CPF in aqueous samples with high sensitivity.

View Article and Find Full Text PDF

In this work, magnetic molecularly imprinted polymer (MMIP) capable of selectively recognizing and adsorbing cordycepin was prepared. The MMIP was prepared using cordycepin as the template molecule, methacrylic acid and acrylamide as the functional monomer and ethylene glycol dimethacrylate as the crosslinker. The MMIP was analyzed using various techniques including transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, vibrating sample magnetometer and x-ray diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!