Dilated cardiomyopathy (DCM) is associated with extensive pathological cardiac remodeling and involves numerous changes in the protein expression profile of the extracellular matrix of the heart. We obtained seven human, end-stage, failing hearts with DCM (DCM-failing) and nine human, nonfailing donor hearts and compared their extracellular matrix protein profiles. We first showed that the DCM-failing hearts had indeed undergone extensive remodeling of the left ventricle myocardium relative to nonfailing hearts. We then isolated the extracellular matrix from a subset of these hearts and performed a proteomic analysis on the isolated matrices. We found that the levels of 26 structural proteins were altered in the DCM-failing isolated cardiac extracellular matrix compared to nonfailing isolated cardiac extracellular matrix. Overall, most of the extracellular matrix proteins showed reduced levels in the DCM-failing hearts, while all of the contractile proteins showed increased levels. There was a mixture of increased and decreased levels of cytoskeletal and nuclear transport proteins. Using immunoprobing, we verified that collagen IV (α and α isoforms), zyxin, and myomesin protein levels were reduced in the DCM-failing hearts. We expect that these data will add to the understanding of the pathology associated with heart failure with DCM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494967 | PMC |
http://dx.doi.org/10.1016/j.carpath.2016.10.001 | DOI Listing |
J Hematol Oncol
January 2025
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.
View Article and Find Full Text PDFACS Nano
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Ligustilide, a phthalide compound extracted from Umbelliferae plants such as Angelica sinensis and Ligusticum chuanxiong, has been proven to possess various pharmacological activities, such as anti-inflammatory, anti-tumor, anti-atherosclerosis, anti-ischemic stroke injury, and anti-Alzheimer's disease properties. In recent years, it has shown great potential, particularly in the treatment of locomotor system diseases. Studies have shown that ligustilide has significant therapeutic effects on various locomotor system diseases, including osteoporosis, osteoarthritis, femoral head necrosis, osteosarcoma, and muscle aging and injury.
View Article and Find Full Text PDFNephrol Dial Transplant
January 2025
School of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, India.
Cardiorenal syndrome (CRS) is represented as an intricate dysfunctional interplay between the heart and kidneys, marked by cardiorenal inflammation and fibrosis. Unlike other organs, the repair process in cardiorenal injury involves a regenerative phase characterized by proliferation and polyploidization, followed by a subsequent pathogenic phase of fibrosis. In CRS, acute or chronic cardiorenal injury leads to hyperactive inflammation and fibrotic remodeling, associated with injury-mediated immune cell (Macrophages, Monocytes, and T-cells) infiltration and myofibroblast activation.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China. Electronic address:
Systemic or local use of glucocorticoids (GCs) can induce pathological elevation of intraocular pressure (IOP), potentially leading to permanent visual loss. Previous studies have demonstrated that rapamycin (Rapa) inhibits the activation of retinal glial cells and the production of neuroinflammation, achieving neuroprotective goals. However, there has been little research on the effect of Rapa on the trabecular meshwork (TM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!