Auxin steers numerous physiological processes in plants, making the tight control of its endogenous levels and spatiotemporal distribution a necessity. This regulation is achieved by different mechanisms, including auxin biosynthesis, metabolic conversions, degradation, and transport. Here, we introduce cis-cinnamic acid (c-CA) as a novel and unique addition to a small group of endogenous molecules affecting in planta auxin concentrations. c-CA is the photo-isomerization product of the phenylpropanoid pathway intermediate trans-CA (t-CA). When grown on c-CA-containing medium, an evolutionary diverse set of plant species were shown to exhibit phenotypes characteristic for high auxin levels, including inhibition of primary root growth, induction of root hairs, and promotion of adventitious and lateral rooting. By molecular docking and receptor binding assays, we showed that c-CA itself is neither an auxin nor an anti-auxin, and auxin profiling data revealed that c-CA does not significantly interfere with auxin biosynthesis. Single cell-based auxin accumulation assays showed that c-CA, and not t-CA, is a potent inhibitor of auxin efflux. Auxin signaling reporters detected changes in spatiotemporal distribution of the auxin response along the root of c-CA-treated plants, and long-distance auxin transport assays showed no inhibition of rootward auxin transport. Overall, these results suggest that the phenotypes of c-CA-treated plants are the consequence of a local change in auxin accumulation, induced by the inhibition of auxin efflux. This work reveals a novel mechanism how plants may regulate auxin levels and adds a novel, naturally occurring molecule to the chemical toolbox for the studies of auxin homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210711PMC
http://dx.doi.org/10.1104/pp.16.00943DOI Listing

Publication Analysis

Top Keywords

auxin
18
auxin efflux
12
cis-cinnamic acid
8
spatiotemporal distribution
8
auxin biosynthesis
8
auxin levels
8
assays c-ca
8
auxin accumulation
8
c-ca-treated plants
8
auxin transport
8

Similar Publications

ABA-auxin cascade regulates crop root angle in response to drought.

Curr Biol

January 2025

Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Enhancing drought resistance through the manipulation of root system architecture (RSA) in crops represents a crucial strategy for addressing food insecurity challenges. Abscisic acid (ABA) plays important roles in drought tolerance; yet, its molecular mechanisms in regulating RSA, especially in cereal crops, remain unclear. In this study, we report a new mechanism whereby ABA mediates local auxin biosynthesis to regulate root gravitropic response, thereby controlling the alteration of RSA in response to drought in cereal crops.

View Article and Find Full Text PDF

Integrated Transcriptome and Metabolome Analysis Reveals the Resistance Mechanisms of Against .

Int J Mol Sci

January 2025

Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.

Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.

View Article and Find Full Text PDF

The lily is a globally popular cut flower, and managing dormancy in lily bulblets is essential for continuous, year-round production. While nitric oxide (NO) has been shown to influence seed dormancy and germination, its role in dormancy release in lilies was previously unconfirmed. In this study, we investigated the effects of NO on dormancy release in lily bulblets using SNP and c-PTIO.

View Article and Find Full Text PDF

Amino acids in wine grapes function as precursors for various secondary metabolites and play a vital role in plant growth, development, and stress resistance. The amino acid/auxin permease () genes encode a large family of transporters; however, the identification and function of the gene family in grapes remain limited. Consequently, we conducted a comprehensive bioinformatics analysis of all genes in grapes, encompassing genome sequence analysis, conserved protein domain identification, chromosomal localization, phylogenetic relationship analysis, and gene expression profiling.

View Article and Find Full Text PDF

In Vitro Rooting of Poplar: Effects and Metabolism of Dichlorprop Auxin Ester Prodrugs.

Plants (Basel)

January 2025

Laboratory for Applied In Vitro Plant Biotechnology, Ghent University, 9000 Ghent, Belgium.

Efficient adventitious root formation is essential in micropropagation. Auxin prodrugs, inactive precursors that convert into active auxins within the plant, offer potentially improved rooting control and reduced phytotoxicity. This study investigated the efficacy of dichlorprop ester (DCPE), commercialized as Corasil and Clemensgros (originally intended to increase grapefruit size), in promoting in vitro root initiation in the model plant × , compared to its hydrolyzed form DCP and the related compound C77.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!