Animal dung is a biomass fuel burned by vulnerable populations who cannot afford cleaner sources of energy, such as wood and gas, for cooking and heating their homes. Exposure to biomass smoke is the leading environmental risk for mortality, with over 4,000,000 deaths each year worldwide attributed to indoor air pollution from biomass smoke. Biomass smoke inhalation is epidemiologically associated with pulmonary diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and respiratory infections, especially in low and middle-income countries. Yet, few studies have examined the mechanisms of dung biomass smoke-induced inflammatory responses in human lung cells. Here, we tested the hypothesis that dung biomass smoke causes inflammatory responses in human lung cells through signaling pathways involved in acute and chronic lung inflammation. Primary human small airway epithelial cells (SAECs) were exposed to dung smoke at the air-liquid interface using a newly developed, automated, and reproducible dung biomass smoke generation system. The examination of inflammatory signaling showed that dung biomass smoke increased the production of several proinflammatory cytokines and enzymes in SAECs through activation of the activator protein (AP)-1 and arylhydrocarbon receptor (AhR) but not nuclear factor-κB (NF-κB) pathways. We propose that the inflammatory responses of lung cells exposed to dung biomass smoke contribute to the development of respiratory diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206396 | PMC |
http://dx.doi.org/10.1152/ajplung.00183.2016 | DOI Listing |
Respir Res
January 2025
Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Spain.
Background: Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow obstruction and destruction of lung tissue, primarily attributed to tobacco smoking. However, other factors like biomass-burning smoke (BS) exposure are also implicated. COPD has been described as an accelerated aging disease, and telomere length is a biomarker of aging.
View Article and Find Full Text PDFACS EST Air
January 2025
Environmental Engineering Program, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.
Quantifying changes in the properties of smoke aerosols under varying conditions is important for understanding the health and environmental impacts of exposure to smoke. Smoke composition, aerosol liquid water content, effective density (ρ), and other properties can change significantly as smoke travels through areas under different ambient conditions and over time. During this study, we measured changes in smoke composition and physical properties due to oxidative aging and exposure to humidity.
View Article and Find Full Text PDFACS EST Air
January 2025
Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.
Wildfires at the wildland-urban interface (WUI) have been increasing in frequency over recent decades due to increased human development and shifting climatic patterns. The work presented here focuses on the impacts of a WUI fire on indoor air using field measurements of volatile organic compounds (VOCs) by Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). We found a slow decrease in VOC mixing ratios over the course of roughly 5 weeks starting 10 days after the fire, and those levels decreased to ∼20% of the initial indoor value on average.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Institute of Environmental Assessment and Water Research - Spanish Research Council (IDAEA-CSIC), Barcelona, Spain; Pollution Prevention Unit, Spanish Ministry for the Ecological Transition, Madrid, Spain.
Changes in climate and land-use have significantly increased both the frequency and intensity of wildland fires globally, exacerbating the potential for hazardous impacts on human health. A better understanding of particle exposure concentrations and scenarios is crucial for developing mitigation strategies to reduce the health risks. Here, PM and black carbon (BC) concentrations were monitored during wildland fires between 2022 and 2024, in fire-prone areas in Catalonia (NE Spain), by means of personal monitors (AirBeam2 and Micro-aethalometers AE51 and MA200).
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA.
Residents of Bangladesh are exposed to numerous chemicals due to local industries, including dyeing mills, cotton mills, and the use of biomass in daily cooking. It is, therefore, important to characterize the exposome and work to identify risk factors of exposure. We used silicone wristband passive samplers to evaluate exposure to volatile and semi-volatile organic compounds in a sample of 40 children in the Araihazar upazila of Bangladesh.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!