Two 'trout C-polysaccharide-binding proteins,' TCBP1 and -2, with relevance to early inflammatory events have been discovered in the last century. The present study characterises the respective cDNA sequences from rainbow trout (Oncorhynchus mykiss), including multiple TCBP1 transcript variants. These variants are generated either by the use of alternative splice sites or the exclusion of exons. The longest mRNA isoform, TCBP1-1, encodes a 245-aa protein with a large signal peptide and a complement component C1q domain. The shortest mRNA isoform, TCBP1-5, contains a premature termination codon and hence fails to encode a functional factor. The 224-aa-long TCBP2 protein consists of a comparably shorter signal peptide and a pentraxin domain. Evolutionary analyses clearly separated TCBP1 and -2 because of distinctive protein motifs. Expression profiling in the liver, spleen, and head kidney tissues of healthy trout revealed that TCBP2 mRNA concentrations were higher than the concentrations of all five TCBP1 mRNA isoforms together. The hepatic levels of these TCBP1 variants increased significantly upon infection with Aeromonas salmonicida, whereas TCBP2 transcript levels rose moderately. As the biological function of TCBP1 is barely understood, we tagged this factor with the green fluorescent protein and visualised its expression in HEK-293 cells. Overexpression of TCBP1 increased the level of active NF-κB factors and induced cell death, indicating its involvement in proapoptotic NF-κB-dependent signalling routes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2016.11.021 | DOI Listing |
Eur J Hum Genet
January 2025
Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
Background: Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients.
View Article and Find Full Text PDFClin Genet
January 2025
Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Arthrogryposis multiplex congenita (AMC) is a heterogeneous disorder associated with 1/3000 to 1/5000 live births. We report a consanguineous family with multiple affected members with AMC and identified a recessive mutation in the highly conserved splice donor site, resulting in the mis-splicing of the affected exons. SENP7 is a deSUMOylase that is critical for sarcomere assembly and skeletal muscle contraction by regulating the transcriptional program in the skeletal muscle.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.
View Article and Find Full Text PDFPLoS One
January 2025
Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.
Epithelial cancers are typically heterogeneous with primary prostate cancer being a typical example of histological and genomic variation. Prior studies of primary prostate cancer tumour genetics revealed extensive inter and intra-patient genomic tumour heterogeneity. Recent advances in machine learning have enabled the inference of ground-truth genomic single-nucleotide and copy number variant status from transcript data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!