Background: The epithelial cell adhesion molecule (EpCAM) is a biomarker that is highly overexpressed on the surface of epithelial carcinoma cells. In this study, silver nanoparticles covered with polyvinyl alcohol (AgNPs-PVA) were synthesized, characterized and used in a microfluidic immunosensor based on the use of anti-EpCAM recombinant antibodies as a trapping agent.

Methods: The concentration of trapped EpCAM is then electrochemically quantified by HRP-conjugated anti-EpCAM-antibody. HRP reacted with its enzymatic substrate in a redox process which resulted in the appearance of a current whose magnitude (at a working voltage as low as -0.10V) is directly proportional to the concentration of EpCAM.

Results: Under optimized conditions, the detection limits for the microfluidic immunosensor and a commercial ELISA were 0.8 and 13.9pg/L, respectively. The within-assay and between-assay coefficients of variation are below 6.5% for the proposed method. The immunosensor was validated by analyzing patient samples, and a good correlation with a commercial ELISA was obtained.

Conclusions: The good analytical performance is attributed to the efficient immobilization of the anti-EpCAM recombinant antibodies on the AgNPs-PVA, and its high specificity for EpCAM. This microfluidic immunosensor is intended for use in diagnosis and prognosis of epithelial cancer, to monitor the disease, and to assess therapeutic efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2016.11.012DOI Listing

Publication Analysis

Top Keywords

microfluidic immunosensor
16
immunosensor based
8
epithelial cancer
8
anti-epcam recombinant
8
recombinant antibodies
8
commercial elisa
8
immunosensor
5
integrated bio-affinity
4
bio-affinity nano-platform
4
microfluidic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!