Optical biosensing strategies for DNA methylation analysis.

Biosens Bioelectron

School of Natural Sciences, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia. Electronic address:

Published: June 2017

DNA methylation is an epigenetic modification of DNA, where a methyl group is added at the fifth carbon of the cytosine base to form 5 methyl cytosine (5mC) without altering the DNA sequences. It plays important roles in regulating many cellular processes by modulating key genes expression. Alteration in DNA methylation patterns becomes particularly important in the aetiology of different diseases including cancers. Abnormal methylation pattern could contribute to the pathogenesis of cancer either by silencing key tumor suppressor genes or by activating oncogenes. Thus, DNA methylation biosensing can help in the better understanding of cancer prognosis and diagnosis and aid the development of therapies. Over the last few decades, a plethora of optical detection techniques have been developed for analyzing DNA methylation using fluorescence, Raman spectroscopy, surface plasmon resonance (SPR), electrochemiluminescence and colorimetric readouts. This paper aims to comprehensively review the optical strategies for DNA methylation detection. We also present an overview of the remaining challenges of optical strategies that still need to be focused along with the lesson learnt while working with these techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2016.10.034DOI Listing

Publication Analysis

Top Keywords

dna methylation
24
dna
8
strategies dna
8
optical strategies
8
methylation
7
optical
4
optical biosensing
4
biosensing strategies
4
methylation analysis
4
analysis dna
4

Similar Publications

Overlapping DNA methylation changes in enhancers in clonal cytopenia of undetermined significance and myelodysplastic neoplasm patients with , , or mutations.

Haematologica

January 2025

The Epi-/Genome lab, Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen.

Not available.

View Article and Find Full Text PDF

Introduction: During the COVID-19 pandemic, major events with immune-modulating effects at population-level included COVID-19 infection, lockdowns, and mass vaccinations campaigns. As immune responses influence many immune-mediated diseases, population scale immunological changes may have broad consequences.

Methods: We investigated the impact of lockdowns, COVID-19 infection and vaccinations on immune responses in the 2000HIV study including 1895 asymptomatic virally-suppressed people living with HIV recruited between October 2019 and October 2021.

View Article and Find Full Text PDF

Polymorphisms in the gene and neuroblastoma risk in Chinese children from Jiangsu province.

J Cancer

January 2025

Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China.

Neuroblastoma is the most prevalent extracranial solid tumor among children and exhibits remarkable heterogeneity. The methylation of cytosine to form 5-methylcytosine (m5C) is the primary type of modification found in DNA and RNA. The NOL1/NOP2/sun (NSUN) family, specifically NSUN1, is responsible for the methylation process and has been shown to play a key role in cell differentiation and cancer development.

View Article and Find Full Text PDF

Chemoresistance severely deteriorates the prognosis of advanced gastric cancer (GC) patients. Several studies demonstrated that (HP)-positive GC patients showed better outcomes after receiving chemotherapy than HP-negative ones. This study aims to confirm the role of HP in GC chemotherapy and to study the underlying mechanisms.

View Article and Find Full Text PDF

DNA methylation in wheat: current understanding and future potential for enhancing biotic and abiotic stress tolerance.

Physiol Mol Biol Plants

December 2024

Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India.

Unlabelled: DNA methylation is a paramount epigenetic mark that helps balance gene expression post-transcriptionally. Its effect on specific genes determines the plant's holistic development and acclimatization during adversities. L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!