Low-cost adsorbents have been continuously developed for heavy metal removal, but little information is available concerning the follow-up treatment of the toxic metal-laden adsorbents. In this study, an optional strategy was provided for the further treatment of heavy metal-impregnated low-cost adsorbents through employing them for phosphate retention. The enhancement of phosphate adsorption by the sorbed lead was first validated using several types of raw or modified waste biomass. Tea waste-supported hydrated manganese dioxide (HMO-TW) with the highest Pb sorption capability was then chosen to systematically evaluate phosphate retention. Phosphate adsorption onto lead-laden HMO-TW (HMO-TW(Pb)) was pH-insensitive with only slight decline at pH > 8.5, and was barely affected by competing anions owing to the specific surface precipitation mechanism. Moreover, no signs of lead leakage from HMO-TW(Pb) were observed during phosphate adsorption at a wide pH range (4.2-11.3) and high ion strength (0-250 mg L NaNO). The lead on HMO-TW(Pb) was greatly stabilized through phosphate retention, which also reduced the environmental risks of their following treatment such as solidification and landfill. Additionally, the phosphate adsorption onto HMO-TW(Pb) was quick (with equilibrium time <60 min) and barely affected by temperature. Fixed-bed column test further suggested that HMO-TW(Pb) has practical applicability in efficient removal of phosphate from water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.10.142DOI Listing

Publication Analysis

Top Keywords

phosphate adsorption
16
phosphate retention
12
phosphate
8
low-cost adsorbents
8
phosphate removal
4
removal lead-exhausted
4
lead-exhausted bioadsorbents
4
bioadsorbents simultaneously
4
simultaneously achieving
4
lead
4

Similar Publications

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

Emerging and legacy organophosphate flame retardants in the tropical estuarine food web: Do they exhibit similar bioaccumulation patterns, trophic partitioning and dietary exposure?

Water Res X

May 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.

View Article and Find Full Text PDF

Synthesis of zirconium-based metal-organic framework/gelatin aerogel for removing phosphate and fluoride from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:

This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.

View Article and Find Full Text PDF

Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting.

J Colloid Interface Sci

January 2025

Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:

Article Synopsis
  • The study focuses on creating effective and affordable electrocatalysts for water electrolysis, vital for improving technology in this area.
  • The authors developed a novel catalyst by anchoring carbonyl iron powder in nickel foam, leading to enhanced surface area and efficient ion movement.
  • The catalyst exhibits high activity due to a dynamic interaction between different nickel and iron phases, significantly boosting its performance in the oxygen evolution reaction.
View Article and Find Full Text PDF
Article Synopsis
  • Coal-based humic acid residue (HAS) has potential as a nutrient-rich material for adsorbing harmful substances like mercury (Hg), and a modified version (N-HAS) was created to enhance its adsorption properties.
  • N-HAS demonstrated a strong capacity for Hg removal, with a maximum adsorption of 124.20 mg/g and stable performance over multiple cycles, effectively lowering Hg levels in both maize and contaminated soil.
  • The study highlighted that using N-HAS led to significant reductions in Hg content in maize kernels (up to 72.09%) and soil (up to 82.80%), with optimal results observed at an application rate of 0.4 kg/m.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!