Background: Multi-drug resistance (MDR) remains a significant obstacle to successful chemotherapy treatment for osteosarcoma patients. One of the central causes of MDR is the overexpression of the membrane bound drug transporter protein P-glycoprotein (P-gp), which is the protein product of the MDR gene ABCB1. Though several methods have been reported to reverse MDR in vitro and in vivo when combined with anticancer drugs, they have yet to be proven useful in the clinical setting.

Results: The meta-analysis demonstrated that a high level of P-gp may predict poor survival in patients with osteosarcoma. The expression of P-gp can be efficiently blocked by the clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9 system (CRISPR-Cas9). Inhibition of ABCB1 was associated with reversing drug resistance in osteosarcoma MDR cell lines (KHOSR2 and U-2OSR2) to doxorubicin.

Materials And Methods: We performed a meta-analysis to investigate the relationship between P-gp expression and survival in patients with osteosarcoma. Then we adopted the CRISPR-Cas9, a robust and highly efficient novel genome editing tool, to determine its effect on reversing drug resistance by targeting endogenous ABCB1 gene at the DNA level in osteosarcoma MDR cell lines.

Conclusion: These results suggest that the CRISPR-Cas9 system is a useful tool for the modification of ABCB1 gene, and may be useful in extending the long-term efficacy of chemotherapy by overcoming P-gp-mediated MDR in the clinical setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347784PMC
http://dx.doi.org/10.18632/oncotarget.13148DOI Listing

Publication Analysis

Top Keywords

drug resistance
12
crispr-cas9 system
8
survival patients
8
patients osteosarcoma
8
reversing drug
8
osteosarcoma mdr
8
mdr cell
8
abcb1 gene
8
mdr
7
osteosarcoma
6

Similar Publications

Molecular characterization of tumors is essential to identify predictive biomarkers that inform treatment decisions and improve precision immunotherapy development and administration. However, challenges such as the heterogeneity of tumors and patient responses, limited efficacy of current biomarkers, and the predominant reliance on single-omics data, have hindered advances in accurately predicting treatment outcomes. Standard therapy generally applies a "one size fits all" approach, which not only provides ineffective or limited responses, but also an increased risk of off-target toxicities and acceleration of resistance mechanisms or adverse effects.

View Article and Find Full Text PDF

Background: Periodontitis is not always satisfactorily treated with conventional scaling and root planing, and adjunctive use of antibiotics is required in clinical practice. Therefore, it is important for clinicians to understand the diversity and the antibiotic resistance of subgingival microbiota when exposed to different antibiotics.

Materials And Methods: In this study, subgingival plaques were collected from 10 periodontitis patients and 11 periodontally healthy volunteers, and their microbiota response to selective pressure of four antibiotics (amoxicillin, metronidazole, clindamycin, and tetracycline) were evaluated through 16S rRNA gene amplicon and metagenomic sequencing analysis.

View Article and Find Full Text PDF

Background: Antibody-drug conjugate (ADC) is an anticancer drug that links toxins to specifically targeted antibodies via linkers, offering the advantages of high target specificity and high cytotoxicity. However, complexity of its structural composition poses a greater difficulty for drug design studies.

Objectives: Pharmacokinetic/pharmacodynamic (PK/PD) based consideration of ADCs has increasingly become a hot research topic for optimal drug design in recent years, providing possible ideas for obtaining ADCs with desirable properties.

View Article and Find Full Text PDF

HSF1 at the crossroads of chemoresistance: from current insights to future horizons in cell death mechanisms.

Front Cell Dev Biol

January 2025

Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States.

Heat Shock Factor 1 (HSF1) is a major transcriptional factor regulating the heat shock response and has become a potential target for overcoming cancer chemoresistance. This review comprehensively examines HSF1's role in chemoresistance and its potential as a therapeutic target in cancer. We explore the complex, intricate mechanism that regulates the activation of HSF1, HSF1's function in promoting resistance to chemotherapy, and the strategies used to manipulate HSF1 for therapeutic benefit.

View Article and Find Full Text PDF

Impact of chlorine dioxide and chlorhexidine mouthwashes on friction and surface roughness of orthodontic stainless steel wires: an in-vitro comparative study.

F1000Res

January 2025

Department of Orthodontics and Dentofacial Orthopaedics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karanataka, 576104, India.

Objectives: Good oral hygiene measures are important for successful orthodontic treatment. They involve various types of mouthwashes which have been reported to cause alteration of mechanical properties of archwires. This study aimed to evaluate the effects of a new kind of chlorine-dioxide-containing mouthwash on the mechanical properties and surface morphology of stainless steel orthodontic archwires against the already prevalent chlorhexidine mouthwash in the market.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!