Gallic acid attenuates chromium-induced thyroid dysfunction by modulating antioxidant status and inflammatory cytokines.

Environ Toxicol Pharmacol

Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt.

Published: December 2016

AI Article Synopsis

  • The study explores the protective effects of gallic acid against thyroid damage caused by hexavalent chromium in a rat model, specifically using potassium dichromate to induce thyroid dysfunction.
  • Rats treated with potassium dichromate exhibited decreased thyroid hormone levels and increased thyroid-stimulating hormone (TSH), along with signs of oxidative stress and inflammation, including reductions in antioxidant enzyme activities and increased pro-inflammatory markers.
  • Co-treatment with gallic acid significantly improved these conditions by reducing inflammation and oxidative stress markers, thereby suggesting its potential as a protective agent against thyroid dysfunction induced by hexavalent chromium exposure.

Article Abstract

Hexavalent chromium-mediated oxidative stress causes severe organ damage. The present study was designed to investigate the possible thyroprotective effect and underlying mechanisms of gallic acid using rat model of potassium dichromate-induced thyroid dysfunction. Forty adult male albino rats were divided into 4 groups: control, gallic acid (20mg GA/kg b. wt), potassium dichromate (2mg PD/kg b. wt) and the fourth group was co-treated with PD and GA. PD-injection resulted in decreased serum free triiodothyonine (FT3), free thyroxine (FT4) with concomitant significant increase in thyroid stimulating hormone (TSH) levels. Superoxide dismutase (SOD), glutathione-S-transferase (GST) activities and their respective mRNA expression and reduced glutathione (GSH) content were significantly decreased. Thyroid nitrosative stress marker (NO level and iNOS mRNA and protein expression) and pro-inflammatory cytokines (serum TNF-α, IL-6 and thyroid TNF-α, IL-6 and COX-2 gene and protein expression levels) were disturbed. Histopathological changes revealed distended, collapsed and degenerated follicles with vacuolated cytoplasm. GA co-treatment attenuated pro-inflammatory cytokines, the thyroid expression of iNOS, TNF-α, IL-6 and COX-2, decreased the elevated lipid peroxidation biomarkers and NO level and up- regulated SOD and GST mRNA expression levels. In conclusion, GA has shown strong modulatory potential against PD-induced inflammation and oxidative stress in albino rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2016.08.019DOI Listing

Publication Analysis

Top Keywords

gallic acid
12
tnf-α il-6
12
thyroid dysfunction
8
oxidative stress
8
albino rats
8
mrna expression
8
protein expression
8
pro-inflammatory cytokines
8
il-6 cox-2
8
expression levels
8

Similar Publications

Selective Removal of Highly Toxic Selenite by a Biobased Zirconium-Polyphenolic Supramolecular Gel.

Inorg Chem

January 2025

State Key Laboratory of Tea Biology and Utilization, Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.

The green and facile biobased functional materials have attracted great attention due to the promising potential to deal with the water pollution of toxic selenium ions that act as a serious threat to human health and the ecological environment. The development of cheap and eco-friendly approaches to remove SeO is of great significance for the safety of drinking water. However, there are some disadvantages in most of the employed methods, such as poor removal capability, high cost, and unsustainability.

View Article and Find Full Text PDF

Preparation and stability of chebulagic acid and chebulinic acid from Terminalia chebula and their biological activity.

Pak J Pharm Sci

January 2025

College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China/Province Multi-Component Chinese Medicine Engineering Technology Research Center of Liaoning, Dalian, China/Modern Traditional Chinese Medicine Research and Engineering Laboratory of Liaoning, Dalian, China.

Chebulagic acid and chebulinic acid are the two tannin compounds with the highest content in Terminalia chebula, they were separated by ODS column eluted with 20% methanol and 35% methanol, respectively. The compounds were identified by comparing the data of H NMR and C NMR with the literature; HPLC method was used to investigate the stable storage conditions of chebulagic acid and chebulinic acid; lipopolysaccharide (LPS) induced in vivo inflammation model and RAW264.7 macrophage in vitro inflammatory model to evaluate the anti-inflammatory activities of chebulagic acid and chebulinic acid.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how metabolic profiles change in patients with patent foramen ovale (PFO) and migraines before and after surgery, using metabolomics techniques.
  • Significant differences in metabolites like linoleic acid and quinolinic acid were observed after surgery, indicating potential diagnostic markers for these patients.
  • The research highlights the importance of metabolic pathways related to inflammation and oxidative stress in understanding migraines associated with PFO.
View Article and Find Full Text PDF

Herein, we developed multifunctional hydrogels formed between soybean protein (SPI)-gallic acid conjugate and oxidized dextran (ODex) via a Schiff base reaction. The effects of ODex on the morphology, structure, and functional properties of the hydrogels were elucidated. The results showed that the crosslinking modes in the hydrogels include hydrogen bonding, Schiff bases, Michael addition, and π-π stacking.

View Article and Find Full Text PDF

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!