Disturbances in lipid metabolism may play an important role in the onset of irreversible myocardial damage. To investigate the effect of ischemia and reperfusion on lipid homeostasis and to delineate its possible consequences for myocardial damage, Krebs-Henseleit-perfused, working rat hearts were subjected to various periods of no-flow ischemia (10 to 90 minutes) with or without 30 minutes of reperfusion. During ischemia, the rise in nonesterified fatty acids (NEFAs) was preceded by the accumulation of substantial amounts of glycerol, indicating the presence of an active triacylglycerol-NEFA cycle. The subsequent rise in NEFAs (from 0.25 to 1.64 mumol/g dry residue wt after 90 minutes [means]) coincided with the reduction of ATP to values lower than 10 mumol/g dry wt and the rise of AMP, a potent inhibitor of acyl-coenzyme A synthetase, to values exceeding 2 mumol/g dry wt, making the latter compound a good candidate to hamper the turnover of endogenous lipids during prolonged ischemia. Reperfusion resulted in an additional rise in NEFAs (up to 4.1 mumol/g dry residue wt after 60 minutes of ischemia). Neither ischemia nor reperfusion resulted in significant decreases in the tissue content of triacylglycerols and the various phospholipids. During reperfusion recovery of stroke volume was still adequate at tissue NEFA levels thought to be incompatible with normal mitochondrial function. A positive correlation (r = 0.81) was found between NEFA content of reperfused hearts and cumulative release of lactate dehydrogenase during reperfusion. Accordingly it is concluded that 1) reperfusion results in additional changes in myocardial lipid homeostasis, 2) the accumulating NEFAs are compartmentalized, possibly at the cellular level, and 3) the accumulation of NEFAs is a sensitive marker for myocardial cell damage.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.res.64.2.304DOI Listing

Publication Analysis

Top Keywords

ischemia reperfusion
16
mumol/g dry
16
myocardial damage
12
working rat
8
rat hearts
8
reperfusion
8
lipid homeostasis
8
rise nefas
8
dry residue
8
residue minutes
8

Similar Publications

Ulinastatin treatment mitigates glycocalyx degradation and associated with lower postoperative delirium risk in patients undergoing cardiac surgery: a multicentre observational study.

Crit Care

January 2025

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, China.

Background: Ulinastatin (UTI), recognized for its anti-inflammatory properties, holds promise for patients undergoing cardiac surgery. This study aimed to investigate the relationship between intraoperative UTI administration and the incidence of delirium following cardiac surgery.

Methods: A retrospective analysis was performed on a retrospective cohort of 6,522 adult cardiac surgery patients to evaluate the relationship between UTI treatment and the incident of postoperative delirium (POD) in patients ongoing cardiac surgery.

View Article and Find Full Text PDF

DL-3-n-butylphthalide (NBP) exhibits promising pharmacological efficacy against ischemia-reperfusion injury, but its protective effects may involve many mechanisms that are yet to be fully understood. This study aimed to profile the metabolic alterations induced by NBP during the process of ischemia-reperfusion using spatial metabolomics. Our study found that NBP could significantly reduce the ischemic area and restore physical function by potentially modulating pathways of the citrate cycle, pyruvate metabolism, autophagy, and unsaturated fatty acid biosynthesis.

View Article and Find Full Text PDF

Piceatannol upregulates USP14-mediated GPX4 deubiquitination to inhibit neuronal ferroptosis caused by cerebral ischemia-reperfusion in mice.

Food Chem Toxicol

January 2025

Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China. Electronic address:

Ischemic stroke is a very common brain disorder. This study aims to assess the neuroprotective effects of piceatannol (PCT) in preventing neuronal injury resulting from cerebral ischemia and reperfusion (I/R) in mice. Additionally, we investigated the underlying mechanisms through which PCT inhibits neuronal ferroptosis by modulating the USP14/GPX4 signaling axis.

View Article and Find Full Text PDF

The Mechanism of Bovis Culus Sativus Protecting BBB Damage in Stroke: Insights from Network Pharmacology, Bioinformatics, and Experiments.

J Ethnopharmacol

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137 , P.R. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China. Electronic address:

Ethnopharmacological Relevance: Bovis calculus (BC) has a medicinal history of over 2,000 years in treating stroke in China. Bovis Culus Sativus (BCS) has similar pharmacological effects to BC. Due to the scarcity of BC, BCS is often used as a substitute for BC in clinical practice for treating stroke in traditional Chinese medicine.

View Article and Find Full Text PDF

AP39, a novel mitochondria-targeted hydrogen sulfide donor, promotes cutaneous wound healing in an in vivo murine model of acute frostbite injury.

Biomed Pharmacother

January 2025

Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada. Electronic address:

Frostbite injury refers to cold tissue injury which typically affects the peripheral areas of the body, and is associated with limb loss and high rates of morbidity. Historically, treatment options have been limited to supportive care, leading to suboptimal outcomes for affected patients. The pathophysiology of frostbite injury has been understood in recent years to share similarity with that of cold ischemia-reperfusion injury as seen in solid organ transplantation, of which mitochondria play an important contributing role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!