Quantum-dense metrology constitutes a special case of quantum metrology in which two orthogonal phase space projections of a signal are simultaneously sensed beyond the shot-noise limit. Previously, it was shown that the additional sensing channel that is provided by quantum-dense metrology contains information that can be used to identify and to discard corrupted segments from the measurement data. Here, we propose and demonstrate a new method in which this information is used for improving the sensitivity without discarding any measurement segments. Our measurement reached sub-shot-noise performance, although initially strong classical noise polluted the data. The new method has high potential for improving the noise spectral density of gravitational-wave detectors at signal frequencies of high astrophysical relevance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.117.180801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!