Background: The feasibility of synchrotron radiation-based phase-contrast computed tomography (PCCT) for visualization of the atrioventricular (AV) conduction axis in human whole heart specimens was tested using four postmortem structurally normal newborn hearts obtained at autopsy.

Methods: A PCCT imaging system at the beamline BL20B2 in a SPring-8 synchrotron radiation facility was used. The PCCT imaging of the conduction system was performed with "virtual" slicing of the three-dimensional reconstructed images. For histological verification, specimens were cut into planes similar to the PCCT images, then cut into 5-μm serial sections and stained with Masson's trichrome.

Results: In PCCT images of all four of the whole hearts of newborns, the AV conduction axis was distinguished as a low-density structure, which was serially traceable from the compact node to the penetrating bundle within the central fibrous body, and to the branching bundle into the left and right bundle branches. This was verified by histological serial sectioning.

Conclusion: This is the first demonstration that visualization of the AV conduction axis within human whole heart specimens is feasible with PCCT.

Download full-text PDF

Source
http://dx.doi.org/10.1177/2150135116675844DOI Listing

Publication Analysis

Top Keywords

heart specimens
12
conduction axis
12
synchrotron radiation
8
axis human
8
human heart
8
pcct imaging
8
pcct images
8
pcct
6
conduction
5
three dimensional
4

Similar Publications

INTEGRATING RADIOLOGICAL IMAGING TECHNIQUES INTO ANATOMY EDUCATION: MEDICAL TRAINING ENHANCEMANT THROUGH EARLY CT AND MRI TEACHING.

Probl Radiac Med Radiobiol

December 2024

ASST Ovest Milanese, Neuroimaging Unit, Legnano (Milan), Italy, 20025Centro Diagnostico Italiano S.p.A., Department of Diagnostic Imaging and Stereotactic Radiosurgery, Milan, Italy.

Unlabelled: Brain morphology understanding is essential for radiologists, neurologists, and neurosurgeons. Historically, anatomical learning of brain relied on ex vivo specimens. Modern in vivo brain CT and MRI provide spatial, three-dimensional imaging capabilities crucial to help diagnose diseases, plan surgeries, and monitor treatment progress.

View Article and Find Full Text PDF

Archived FFPE cardiac tissue specimens are valuable for molecular studies aimed at identifying biomarkers linked to mortality in cardiovascular disease. Establishing a reliable and reproducible RNA extraction method is critical for generating high-quality transcriptome sequences for molecular assays. Here, the efficiency of four RNA extraction methods: Qiagen AllPrep DNA/RNA method (Method QP); Qiagen AllPrep DNA/RNA method with protocol modification on the ethanol wash step after deparaffinization (Method QE); CELLDATA RNA extraction (Method BP) and CELLDATA RNA extraction with protocol modifications on the lysis step (Method BL) was compared on 23 matching FFPE cardiac tissue specimens (n = 92).

View Article and Find Full Text PDF

Intraoperative frozen section (FS) examination of oncologic surgical specimens is frequently performed to ensure complete surgical resection. Data on the gross evaluation of surgical margins are limited. We recently published a study suggesting the use of a macroscopic 2.

View Article and Find Full Text PDF

Atherosclerosis is a pervasive contributor to ischemic heart disease and stroke. Despite the advance of lipid-lowering therapies and anti-hypertensive agents, the residual risk of an atherosclerotic event remains high, and developing therapeutic strategies has proven challenging. This is due to the complexity of atherosclerosis with a spatial interplay of multiple cell types within the vascular wall.

View Article and Find Full Text PDF

Background: Vaccination is one of the best ways to control the SARS-CoV-2 outbreak. In Taiwan, healthcare workers were prioritized for vaccination, but the effectiveness of these vaccines for them remains unclear. Thus, it's essential to examine their neutralizing antibodies after prime-boost vaccinations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!