Purpose: It has been reported that adipocytes secrete vascular endothelial growth factor. Therefore, we conducted a 5-year longitudinal epidemiological study to further elucidate the association between vascular endothelial growth factor levels and temporal changes in body mass index.

Methods: Our study subjects were Japanese male workers, who had regular health check-ups. Vascular endothelial growth factor levels were measured at baseline. To examine the association between vascular endothelial growth factor levels and overweight, we calculated the odds ratio using a multivariate logistic regression model. Moreover, linear mixed effect models were used to assess the association between vascular endothelial growth factor level and temporal changes in body mass index during the 5-year follow-up period.

Results: Vascular endothelial growth factor levels were marginally higher in subjects with a body mass index greater than 25 kg/m compared with in those with a body mass index less than 25 kg/m (505.4 vs. 465.5 pg/mL, P = 0.1) and were weakly correlated with leptin levels (β: 0.05, P = 0.07). In multivariate logistic regression, subjects in the highest vascular endothelial growth factor quantile were significantly associated with an increased risk for overweight compared with those in the lowest quantile (odds ratio 1.65, 95 % confidential interval: 1.10-2.50). Moreover P for trend was significant (P for trend = 0.003). However, the linear mixed effect model revealed that vascular endothelial growth factor levels were not associated with changes in body mass index over a 5-year period (quantile 2, β: 0.06, P = 0.46; quantile 3, β: -0.06, P = 0.45; quantile 4, β: -0.10, P = 0.22; quantile 1 as reference).

Conclusions: Our results suggested that high vascular endothelial growth factor levels were significantly associated with overweight in Japanese males but high vascular endothelial growth factor levels did not necessarily cause obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12020-016-1165-5DOI Listing

Publication Analysis

Top Keywords

vascular endothelial
44
endothelial growth
44
growth factor
44
factor levels
28
body mass
24
changes body
16
temporal changes
12
association vascular
12
vascular
11
endothelial
11

Similar Publications

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

Supramolecular Engineering of Nanoceria for Management and Amelioration of Age-Related Macular Degeneration via the Two-Level Blocking of Oxidative Stress and Inflammation.

Adv Sci (Weinh)

January 2025

Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China.

Age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the global leading cause of irreversible blindness. Current first-line therapeutics, vascular endothelial growth factor (VEGF) antagonists, often yield incomplete and suboptimal vision improvement, necessitating the exploration of novel and efficacious therapeutic approaches. Herein, a supramolecular engineering strategy to construct moringin (MOR) loaded α-cyclodextrin (α-CD) coated nanoceria (M@CCNP) is constructed, where the hydroxy and newly formed carbonyl groups of α-CD interact with the nanoceria surface via O─Ce conjunction and the isothiocyanate group of MOR inserts deeply into the α-CD cavity via host-guest interaction.

View Article and Find Full Text PDF

Skin-Integrated Electrogenetic Regulation of Vasculature for Accelerated Wound Healing.

Adv Sci (Weinh)

January 2025

ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.

Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).

View Article and Find Full Text PDF

A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM.

View Article and Find Full Text PDF

Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!