Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recombinant interferon-β1b (IFN-β1b) is an effective remedy against multiple sclerosis and other diseases. However, use of small polypeptide (molecular weight is around 18.5 kDa) is limited due to poor solubility, stability, and short half-life in systemic circulation. To solve this problem, we constructed two variants of PASylated IFN-β1b, with PAS sequence at C- or N-terminus of IFN-β1b. The PAS-modified proteins demonstrated 4-fold increase in hydrodynamic volume of the molecule combined with 2-fold increase of in vitro biological activity, as well as advanced stability and solubility of the protein in solution as opposed to unmodified IFN-β1b. Our results demonstrate that PASylation has a positive impact on stability, solubility, and functional activity of IFN-β1b and potentially might improve pharmacokinetic properties of the molecule as a therapeutic agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-016-7944-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!