Anomaly in neural phase coherence accompanies reduced sensorimotor integration in adults who stutter.

Neuropsychologia

Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA. Electronic address:

Published: December 2016

Despite advances in our understanding of the human speech system, the neurophysiological basis of stuttering remains largely unknown. Here, it is hypothesized that the speech of adults who stutter (AWS) is susceptible to disruptions in sensorimotor integration caused by neural miscommunication within the speech motor system. Human speech unfolds over rapid timescales and relies on a distributed system of brain regions working in a parallel and synchronized manner, and a breakdown in neural communication between the putative brain regions could increase susceptibility to dysfluency. Using a speech motor adaptation paradigm under altered auditory feedback with simultaneous recording of EEG, the oscillatory cortical dynamics was investigated in stuttering and fluent adults (FA). Auditory feedback perturbation involved the shifting of the formant frequencies of the target vowel sound. Reduced adaptation in response to the feedback error was observed in AWS and was accompanied by differences in EEG spectral powers and anomalies in phase coherence evolving over the course of speech motor training. It is understood that phase coherence possibly captures neural communication within speech motor networks. Thus, the phase coherence network of the two groups exhibited differences involving the EEG frequency bands. These findings in anomalous neural synchrony provide novel evidence for compromised neuronal communication at short time scales within the speech motor network of AWS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropsychologia.2016.11.004DOI Listing

Publication Analysis

Top Keywords

speech motor
20
phase coherence
16
sensorimotor integration
8
adults stutter
8
speech
8
human speech
8
brain regions
8
neural communication
8
auditory feedback
8
motor
5

Similar Publications

A man in his late 50s was referred by a speech and language therapist for consideration of a palatal lift prosthesis (PLP) to improve his speech intelligibility. He presented with hypokinetic dysarthria characterised by reduced loudness, breathy voice and hypernasality. The patient had a diagnosis of progressive muscular dystrophy and mobilised in a motorised wheelchair.

View Article and Find Full Text PDF

 Adults with cochlear implants (CIs) need periodic programming of their speech processors to take advantage of alternative adjustments. However, this requires patients to attend the CI center in person.  To evaluate the feasibility of speech processor (SP) self-programming with remote assistance in CI users.

View Article and Find Full Text PDF

Usher syndrome type 1C (USH1C) is a genetic disorder caused by mutations in the USH1C gene, which encodes harmonin, a key component of the mechanoelectrical transduction complex in auditory and vestibular hair cells. USH1C leads to deafness and vestibular dysfunction in humans. An Ush1c knockout (KO) mouse model displaying these characteristic deficits is generated in our laboratory.

View Article and Find Full Text PDF

Water beads are superabsorbent polymer balls. They were originally marketed for agricultural and decorative applications and are now sold as sensory toys. They can be harmful to children in 2 ways.

View Article and Find Full Text PDF

Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!