The cancer stem cell (CSC) hypothesis suggests that cancer stem cells proliferate via a hierarchical model of unidirectional differentiation. However, growing experimental evidence has advanced this hypothesis by introducing a bidirectional hierarchy, in which non-CSCs may dedifferentiate into CSCs. Various models have been developed enabling the incorporation of this plasticity within cancer cell populations, focusing on behaviour in the limit of a large number of cells. However, stochastic effects predominate in the limit of small numbers of cells, which correlates with biologically relevant assays such as the mammosphere formation assay (MFA). Here, we consider two mathematical models incorporating cellular plasticity, namely a two-compartment model and a hierarchical model, and by parameterizing these models with experimental data, we show this behavioural difference in the limits of large and small numbers of cells. Additionally, we analyse the effects of varying cellular plasticity on the survival of the cancer cell population, and show that interestingly, increased plasticity, in certain cases, may be advantageous in reducing the survival probability. Thus, this analysis highlights the necessity of experimentally studying both small and large populations of cancer cells concurrently to obtain valid model predictions, potentially aiding the design of novel therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mbs.2016.11.008 | DOI Listing |
Background/aims: Certain sociodemographic groups are routinely underrepresented in clinical trials, limiting generalisability. Here, we describe the extent to which enriched enrolment approaches yielded a diverse trial population enriched for older age in a randomised controlled trial of a blood-based multi-cancer early detection test (NCT05611632).
Methods: Participants aged 50-77 years were recruited from eight Cancer Alliance regions in England.
Front Biosci (Landmark Ed)
January 2025
Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.
Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Front Biosci (Landmark Ed)
January 2025
Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!