The aim of this study was to investigate the use of bovine serum albumin (BSA) as a solubility enhancer for indometacin (IND) as a model drug. IND-BSA solid dispersions were prepared by both spray drying and freeze drying techniques using IND:BSA solution (20:1 Molar Ratio (MR)) and IND:BSA suspension (100:1 MR). The solid state of IND in solid dispersions was characterised by SEM, DSC and XRD. The aqueous solubility of IND in the presence of increased amounts of BSA was evaluated. Additionally, IND dissolution and release profiles were evaluated. IND in solid dispersions with BSA showed significantly higher solubility in water than that of the physical mixture of both. Enhancement factors of 24,000 and 100,000 were obtained for the solid dispersion formulated in 20:1 MR and 100:1 MR, respectively. Dissolution studies in-vitro indicated a significant increase in the dissolution rate of IND from solid dispersions compared to that of the free drug, with almost 95% of the drug dissolved in the first 5min. Furthermore, an immediate release of IND from BSA solid dispersions was shown. The potential use of albumin as solubility enhancer for poorly soluble drugs, particularly, for immediate release volume-limited dosage forms is reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.11.019 | DOI Listing |
Adv Colloid Interface Sci
January 2025
Department of Biotechnology, School of Applied Sciences and Technology, BLDE (Deemed to be University), Bangaramma Sajjan Campus, Vijayapura 586103, India; Department of Basic Sciences, Faculty of Engineering and Technology, CMR University, Bangalore 562149, India. Electronic address:
Biosurfactants are biodegradable, non-toxic, and environmentally beneficial substances that are produced by microorganisms. Due to their chemical characteristics and stability in various environmental circumstances, biosurfactants are low-molecular-weight, surface-active molecules of great industrial importance. The choice of the producer microbe, kind of substrate, and purification technique determine the chemistry of a biosurfactant and its production cost.
View Article and Find Full Text PDFCancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.
View Article and Find Full Text PDFAll-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates Li6PS5X (X = Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Prague, Czech Republic.
The recent surge in popularity of cannabidiol-infused products extends beyond food and supplements to the cosmetic industry. Accurate labeling remains a significant concern, as many products fail to meet advertised cannabidiol content and/or contain psychoactive tetrahydrocannabinol above the permissible levels. In this work, we present the use of an HPLC-UV-MS/MS method for the quantification of five major cannabinoids (cannabidiol, cannabidiolic acid, tetrahydrocannabinol, tetrahydrocannabinolic acid, and cannabigerol) in oil-in-water cosmetic emulsions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!