Branched chain α-keto acids (BCKAs) are endogenous metabolites of branched-chain amino acids (BCAAs). BCAA and BCKA are significantly elevated in pathologically stressed heart and contribute to chronic pathological remodeling and dysfunction. However, their direct impact on acute cardiac injury is unknown. Here, we demonstrated that elevated BCKAs significantly attenuated ischemia-reperfusion (I/R) injury and preserved post I/R function in isolated mouse hearts. BCKAs protected cardiomyocytes from oxidative stress-induced cell death in vitro. Mechanistically, BCKA protected oxidative stress induced cell death by inhibiting necrosis without affecting apoptosis or autophagy. Furthermore, BCKAs, but not BCAAs, protected mitochondria and energy production from oxidative injury. Finally, administration of BCKAs during reperfusion was sufficient to significantly attenuate cardiac I/R injury. These findings uncover an unexpected role of BCAA metabolites in cardioprotection against acute ischemia/reperfusion injury, and demonstrate the potential use of BCKA treatment to preserve ischemic tissue during reperfusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5174097PMC
http://dx.doi.org/10.1016/j.yjmcc.2016.11.002DOI Listing

Publication Analysis

Top Keywords

metabolites branched-chain
8
branched-chain amino
8
amino acids
8
oxidative stress-induced
8
i/r injury
8
cell death
8
injury
6
bckas
5
keto acid
4
acid metabolites
4

Similar Publications

: Whey protein (WP) consumption prior to a meal curbs appetite and reduces postprandial glucose (PPG) through stimulating endogenous GLP-1 secretion and insulin. : We assessed the metabolic effects of a concentrated WP, using a new micelle-technology (WPM), in people with type 2 diabetes (T2D) and overweight or obesity (NCT04639726). In a randomized-crossover design, participants performed two 240 min lunch meal (622 kcal) tests 7 ± 4 days apart.

View Article and Find Full Text PDF

In this study, we integrated transcriptomic and metabolomic analyses to achieve a comprehensive understanding of the underlying mechanisms of diabetic cardiomyopathy (DCM) in a diabetic rat model. Functional and molecular characterizations revealed significant cardiac injury, dysfunction, and ventricular remodeling in DCM. A thorough analysis of global changes in genes and metabolites showed that amino acid metabolism, especially the breakdown of branched-chain amino acids (BCAAs) such as valine, leucine, and isoleucine, is highly dysregulated.

View Article and Find Full Text PDF

Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity.

Crit Care

January 2025

Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.

Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.

View Article and Find Full Text PDF

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized via tricarboxylic acid (TCA) metabolism downstream of TLR signaling. Itaconate-based treatment strategies are being explored to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF

The Use of Omics in Untangling the Effect of Lifestyle Factors in Pregnancy and Gestational Diabetes: A Systematic Review.

Diabetes Metab Res Rev

January 2025

Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.

Aim: To synthesise the evidence from clinical trials and observational studies using omics techniques to investigate the impact of diet and lifestyle factors on metabolite profile in pregnancy, and in the prevention and management of gestational diabetes mellitus (GDM).

Materials And Methods: A systematic literature search was performed using PubMed, Ovid, CINAHL, and Web of Science databases in October 2023 and updated in September 2024. Inclusion criteria were randomised controlled trials (RCT) or non-RCTs in pregnant women with or without GDM, that measured diet and lifestyle factors, and which applied post-transcriptional omics approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!