A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial Polymeric Scaffolds as Extracellular Matrix Substitutes for Autologous Conjunctival Goblet Cell Expansion. | LitMetric

Purpose: We fabricated and investigated polymeric scaffolds that can substitute for the conjunctival extracellular matrix to provide a substrate for autologous expansion of human conjunctival goblet cells in culture.

Methods: We fabricated two hydrogels and two silk films: (1) recombinant human collagen (RHC) hydrogel, (2) recombinant human collagen 2-methacryloylxyethyl phosphorylcholine (RHC-MPC) hydrogel, (3) arginine-glycine-aspartic acid (RGD) modified silk, and (4) poly-D-lysine (PDL) coated silk, and four electrospun scaffolds: (1) collagen, (2) poly(acrylic acid) (PAA), (3) poly(caprolactone) (PCL), and (4) poly(vinyl alcohol) (PVA). Coverslips and polyethylene terephthalate (PET) were used for comparison. Human conjunctival explants were cultured on scaffolds for 9 to 15 days. Cell viability, outgrowth area, and the percentage of cells expressing markers for stratified squamous epithelial cells (cytokeratin 4) and goblet cells (cytokeratin 7) were determined.

Results: Most of cells grown on all scaffolds were viable except for PCL in which only 3.6 ± 2.2% of the cells were viable. No cells attached to PVA scaffold. The outgrowth was greatest on PDL-silk and PET. Outgrowth was smallest on PCL. All cells were CK7-positive on RHC-MPC while 84.7 ± 6.9% of cells expressed CK7 on PDL-silk. For PCL, 87.10 ± 3.17% of cells were CK7-positive compared to PET where 67.10 ± 12.08% of cells were CK7-positive cells.

Conclusions: Biopolymer substrates in the form of hydrogels and silk films provided for better adherence, proliferation, and differentiation than the electrospun scaffolds and could be used for conjunctival goblet cell expansion for eventual transplantation once undifferentiated and stratified squamous cells are included. Useful polymer scaffold design characteristics have emerged from this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5104422PMC
http://dx.doi.org/10.1167/iovs.16-20081DOI Listing

Publication Analysis

Top Keywords

conjunctival goblet
12
cells
12
cells ck7-positive
12
polymeric scaffolds
8
extracellular matrix
8
goblet cell
8
cell expansion
8
human conjunctival
8
goblet cells
8
hydrogels silk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!