Renal Differentiation of Mesenchymal Stem Cells Seeded on Nanofibrous Scaffolds Improved by Human Renal Tubular Cell Lines-Conditioned Medium.

ASAIO J

From the *Department of Tissue engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; †Stem Cell Technology Research Center, Tehran, Iran; and ‡Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Published: January 2018

Kidney injuries and renal dysfunctions are one of the most important clinical problems, and tissue engineering could be a valuable method for solving it. The objective of this study was to investigate the synergistic effect of renal cell line-conditioned medium and Polycaprolactone (PCL) nanofibers on renal differentiation of human mesenchymal stem cells (MSCs). In the current study, after stem cells isolation and characterization, PCL nanofibrous scaffold was fabricated using electrospinning methods and characterized morphologically, mechanically, and for biocompatibility. The renal differentiation of seeded MSCs on the surface of PCL nanofibers with and without human renal tubular cell lines-conditioned medium was investigated by evaluation of eight important renal-related genes expression by real-time reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. Fabricated nanofibrous scaffolds were good in all characterized items. Almost highest expression of all genes was detected in stem cells seeded on PCL under conditioned media in comparison with the stem cells seeded on PCL, tissue culture polystyrene (TCPS) under renal induction medium, and TCPS under conditioned medium. According to the results, PCL nanofibers in contribution with conditioned medium can provide the optimal conditions for renal differentiation of MSCs and could be a promising candidate for renal tissue engineering application.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MAT.0000000000000470DOI Listing

Publication Analysis

Top Keywords

stem cells
20
renal differentiation
16
cells seeded
12
pcl nanofibers
12
renal
10
mesenchymal stem
8
nanofibrous scaffolds
8
human renal
8
renal tubular
8
tubular cell
8

Similar Publications

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Perianal melanosis.

Br J Dermatol

January 2025

Department of Dermatology, Taiyuan Central Hospital, 030001,Taiyuan, China.

View Article and Find Full Text PDF

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!