Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The wide bandgap semiconductor, ZnO, has gained interest recently as a promising option for use in power electronics such as thermoelectric and piezoelectric generators, as well as optoelectronic devices. Though much work has been done to improve its electronic properties, relatively little is known of its thermal transport properties with large variations in measured thermal conductivity. In this study, we examine the effects of a Hubbard corrected energy functional on the lattice thermal conductivity of wurtzite ZnO calculated using density functional theory and an iterative solution to the Boltzmann transport equation. Showing good agreement with existing experimental measurements, and with a detailed analysis of the mode-dependence and phonon properties, the results from this study highlight the importance of the Hubbard correction in calculations of thermal transport properties of materials with strongly correlated electron systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5103272 | PMC |
http://dx.doi.org/10.1038/srep36875 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!