AI Article Synopsis

  • HR-pQCT (high-resolution peripheral quantitative computed tomography) allows detailed assessment of bone microstructure, but traditional analysis methods overlook important spatial information by summarizing bone properties into general measures.
  • This study introduces statistical parametric mapping (SPM) techniques like voxel-based morphometry (VBM) and tensor-based morphometry (TBM) to conduct local comparisons of bone properties in the distal radius and tibia, allowing for insights into bone structure changes over time.
  • Evaluations of SPM techniques showed high reliability and specificity, with analyses revealing no significant differences in bone features across different scans, supporting their potential use in future clinical HR-pQCT studies.

Article Abstract

HR-pQCT enables in vivo multi-parametric assessments of bone microstructure in the distal radius and distal tibia. Conventional HR-pQCT image analysis approaches summarize bone parameters into global scalars, discarding relevant spatial information. In this work, we demonstrate the feasibility and reliability of statistical parametric mapping (SPM) techniques for HR-pQCT studies, which enable population-based local comparisons of bone properties. We present voxel-based morphometry (VBM) to assess trabecular and cortical bone voxel-based features, and a surface-based framework to assess cortical bone features both in cross-sectional and longitudinal studies. In addition, we present tensor-based morphometry (TBM) to assess trabecular and cortical bone structural changes. The SPM techniques were evaluated based on scan-rescan HR-pQCT acquisitions with repositioning of the distal radius and distal tibia of 30 subjects. For VBM and surface-based SPM purposes, all scans were spatially normalized to common radial and tibial templates, while for TBM purposes, rescans (follow-up) were spatially normalized to their corresponding scans (baseline). VBM was evaluated based on maps of local bone volume fraction (BV/TV), homogenized volumetric bone mineral density (vBMD), and homogenized strain energy density (SED) derived from micro-finite element analysis; while the cortical bone framework was evaluated based on surface maps of cortical bone thickness, vBMD, and SED. Voxel-wise and vertex-wise comparisons of bone features were done between the groups of baseline and follow-up scans. TBM was evaluated based on mean square errors of determinants of Jacobians at baseline bone voxels. In both anatomical sites, voxel- and vertex-wise uni- and multi-parametric comparisons yielded non-significant differences, and TBM showed no artefactual bone loss or apposition. The presented SPM techniques demonstrated robust specificity thus warranting their application in future clinical HR-pQCT studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5811200PMC
http://dx.doi.org/10.1007/s10439-016-1754-8DOI Listing

Publication Analysis

Top Keywords

cortical bone
20
evaluated based
16
bone
14
bone features
12
spm techniques
12
statistical parametric
8
parametric mapping
8
population-based local
8
local comparisons
8
distal radius
8

Similar Publications

Can Trabecular Bone Score Enhance Fracture Risk Assessment in Long-Distance Runners With Bone Stress Injuries?

Clin J Sport Med

October 2024

Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

Objective: To evaluate the trabecular bone score (TBS) Z scores in long-distance runners with bone stress injuries (BSIs) in whom the bone mineral density (BMD) Z score is more than -1.0 (Aim 1) and whether the number of runners with abnormal TBS Z scores would be higher in those with BSI in trabecular-rich sites as compared with cortical-rich sites (Aim 2).

Design: Retrospective cohort study.

View Article and Find Full Text PDF

Background: In magnetic resonance imaging (MRI) segmentation research, the choice of sequence influences the segmentation accuracy. This study introduces a method to compare sequences. By aligning sequences with specific segmentation objectives, we provide an example of a comparative analysis of various sequences for knee images.

View Article and Find Full Text PDF

Introduction: Patellar fractures are rare at 1% incidence of all fractures. However, they can cause significant functional impairments due to the patella's role in knee joint extension. Current scoring systems lack objectivity in assessing patellar healing.

View Article and Find Full Text PDF

Objective: This study evaluated the effect of three-dimensional (3D) volumetric humeral canal fill ratios (VFR) of reverse shoulder arthroplasty (RSA) short and standard stems on biomechanical stability and bone deformations in the proximal humerus.

Methods: Forty cadaveric shoulder specimens were analyzed in a clinical computed tomography (CT) scanner allowing for segmentation of the humeral canal to calculate volumetric measures which were verified postoperatively with plain radiographs. Virtual implant positioning allowed for group assignment (VFR < 0.

View Article and Find Full Text PDF

Mandibular bone defect reconstruction remains a significant challenge for surgeons worldwide. Among multiple biodegradable biopolymers, allogeneic bone scaffolds derived from human sources have been used as an alternative to autologous bone grafts, providing optimal conditions for cell recruitment, adhesion, and proliferation and demonstrating significant osteogenic properties. This study aims to investigate the bone microstructure of the human scapula as a source for allogeneic bone scaffold fabrication for mandibular tissue engineering purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!