Staphylococcus aureus is a serious causative agent of infectious disease. Multidrug-resistant strains like methicillin-resistant S. aureus compromise treatment efficacy, causing significant morbidity and mortality. Active efflux represents a major antimicrobial resistance mechanism. The proton-driven multidrug efflux pump, LmrS, actively exports structurally distinct antimicrobials. To circumvent resistance and restore clinical efficacy of antibiotics, efflux pump inhibitors are necessary, and natural edible spices like cumin are potential candidates. The mode of cumin antibacterial action and underlying mechanisms behind drug resistance inhibition, however, are unclear. We tested the hypothesis that cumin inhibits LmrS drug transport. We found that cumin inhibited bacterial growth and LmrS ethidium transport in a dosage-dependent manner. We demonstrate that cumin is antibacterial toward a multidrug-resistant host and that resistance modulation involves multidrug efflux inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-016-1314-5DOI Listing

Publication Analysis

Top Keywords

multidrug efflux
12
efflux pump
12
pump lmrs
8
cumin antibacterial
8
cumin
6
efflux
5
inhibition multidrug
4
lmrs
4
lmrs staphylococcus
4
staphylococcus aureus
4

Similar Publications

The breast cancer resistance protein (BCRP/ABCG2) plays a major role in the multidrug resistance of cancers toward chemotherapeutic treatments. It was demonstrated that cholesterol regulates the ABCG2 activity, suggesting that lower levels of membrane cholesterol decrease the ABCG2 activity in mammalian cells. However, the precise mechanism remains unclear.

View Article and Find Full Text PDF

Cisplatin (CDDP) is one of the main chemotherapeutic drugs that is widely used in many cancers. However, CDDP resistance is a frequent therapeutic challenge that reduces prognosis in cancer patients. Since, CDDP has noticeable side effects in normal tissues and organs, it is necessary to assess the molecular mechanisms associated with CDDP resistance to improve the therapeutic methods in cancer patients.

View Article and Find Full Text PDF

EmrE is a bacterial membrane-embedded multidrug transporter that functions as an asymmetric homodimer. EmrE is implicated in antibiotic resistance, but is now known to confer either resistance or susceptibility depending on the identity of the small molecule substrate. Here, we report both solution- and solid-state NMR assignments of S64V-EmrE at pH 5.

View Article and Find Full Text PDF

Cancer is a group of dynamic diseases characterized by uncontrollable growth and spread of cells. The heterogenic nature of cancer hinders the abolishment of cancer resulting in a narrow therapeutic index, the capacity of drug efflux, multidrug resistance, and unacceptable side effects. The major challenge in the treatment of malignancies is multidrug resistance (MDR).

View Article and Find Full Text PDF

Omadacycline is a novel antimicrobial belonging to the tetracycline class. It has the ability to evade both efflux and ribosomal methylation types of resistance and therefore has an expanded spectrum compared to other tetracycline agents. Omadacycline is active against a number of multidrug-resistant bacteria, including macrolide and doxycycline-resistant methicillin-resistant (MRSA), vancomycin-resistant Enterococcus, and several enteric gram-negative bacilli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!