Efficient one-pot Ugi-Smiles couplings are reported for the use of furyl-substituted aldehyde components. In the presence of these heterocyclic aldehydes, reactions tolerated variations in amine components and led to either isolated -arylamide Ugi-Smiles adducts or -arylepoxyisoindolines, products of tandem Ugi-Smiles Diels-Alder cyclizations, in moderate yields. A thienyl-substituted aldehyde was also a competent component for Ugi-Smiles adduct formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082724PMC
http://dx.doi.org/10.3762/bjoc.12.191DOI Listing

Publication Analysis

Top Keywords

heterocyclic aldehydes
8
ugi-smiles couplings
8
ugi-smiles
5
application heterocyclic
4
aldehydes components
4
components ugi-smiles
4
couplings efficient
4
efficient one-pot
4
one-pot ugi-smiles
4
couplings reported
4

Similar Publications

Atmospheric oxygen mediated oxidation coupling of primary and secondary alcohols: synthesis of pyrazolo[1,5-]pyrimidines.

Org Biomol Chem

January 2025

Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.

An atmospheric oxygen-mediated oxidative coupling of primary and secondary alcohols for the synthesis of nitrogen-containing heterocycles has been developed. This method utilizes atmospheric oxygen as the sole, environmentally friendly oxidant to convert a variety of alkyl and aromatic primary alcohols into aldehyde equivalents, avoiding over-oxidation to carboxylic acids. Notably, these mild oxidation conditions are compatible with both primary and secondary alkyl alcohols as substrates.

View Article and Find Full Text PDF

Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.

View Article and Find Full Text PDF

Maillard reaction inducing amino acids degradation can adjust the flavour characteristic of black tea.

Food Res Int

February 2025

Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China. Electronic address:

Drying is the step that is to be used to adjust and control the formation of flavour and quality in black tea processing. In the present work, the comprehensive two-dimensional gas chromatography with mass spectrometry (GC × GC-MS) and gas chromatography olfactometry with mass (GC-O-MS) were used to determine the dynamic change of the volatile compounds in black tea during drying at 90, 120, 150 °C for 1 h. Results showed that the ratio of esters and aldehydes largely declined when temperature was elevated from 90 °C to 150 °C, while the ratio of heterocycles was increased to 22.

View Article and Find Full Text PDF

DNA-compatible one-pot synthesis of multi-substituted dihydrofuran pyridinium ylide-mediated cyclization.

Org Biomol Chem

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.

Synthesis of chemically diverse heterocyclic scaffolds in DNA-encoded libraries is highly demanded. We herein reported a convenient one-pot multi-component on-DNA synthetic strategy to afford multi-substituted 2,3-dihydrofuran scaffolds pyridinium ylide-mediated cyclization. This reaction exhibited modest to excellent conversions for a broad range of DNA-conjugated aldehydes, β-ketonitriles and pyridinium salts under mild reaction conditions.

View Article and Find Full Text PDF

Background: Xanthene derivatives are a notable class of heterocyclic compounds widely studied for their significant biological impact. These molecules, found in both natural and synthetic forms, have attracted substantial scientific interest due to their broad spectrum of biological activities. The xanthene nucleus, in particular, is associated with a range of potential pharmaceutical properties, including antibacterial, antiviral, antiinflammatory, anticancer, and antioxidant effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!