Starting from ()-β-phenylalanine, easily accessible by lipase-catalyzed kinetic resolution, a chiral triamine was assembled by a reductive amination and finally cyclized to form the title compound . In the crystals of the guanidinium benzoate salt the six membered rings of adopt conformations close to an envelope with the phenyl substituents in pseudo-axial positions. The unprotonated guanidine catalyzes Diels-Alder reactions of anthrones and maleimides (25-30% ee). It also promotes as a strong Brønsted base the retro-aldol reaction of some cycloadducts with kinetic resolution of the enantiomers. In three cases, the retro-aldol products (48-83% ee) could be recrystallized to high enantiopurity (≥95% ee). The absolute configuration of several compounds is supported by anomalous X-ray diffraction and by chemical correlation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082680 | PMC |
http://dx.doi.org/10.3762/bjoc.12.176 | DOI Listing |
S Afr J Surg
December 2024
Department of Surgical Sciences, Nelson R Mandela School of Clinical Medicine, University of KwaZulu-Natal, South Africa.
Background: KwaZulu-Natal bears a significant trauma burden, with polytrauma patients often experiencing traumatic limb amputations. This study investigates traumatic limb amputations in the subgroup of severely injured polytrauma patients admitted to the trauma ICU in KwaZulu-Natal. This study aims to describe the management and outcomes of traumatic limb amputations in polytrauma patients at the trauma ICU.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
Organoboron complexes have garnered significant attention due to their remarkable optical properties and diverse applications. However, synthesizing stable fused five-, six- and seven-membered organoboron complexes possess significant challenges. In this study, we successfully developed novel mono-nuclear (6-8 & 10) and di-nuclear (9) organoboron complexes supported by triaminoguanidine-salicylidene based -symmetric Schiff base ligands one-step condensation reaction with excess phenylboronic acid.
View Article and Find Full Text PDFPotato is a versatile food crop and major component of human nutrition worldwide. Model calculations and computer simulations can be used to optimize the resource allocation in potato breeding programs but require quantitative genetic parameters. The objectives of our study are to (i) estimate quantitative genetic parameters of the most important phenotypic traits in potato breeding programs, (ii) compare the importance of inter- vs.
View Article and Find Full Text PDFBioact Mater
April 2025
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Biomimetic neural substitutes, constructed through the bottom-up assembly of cell-matrix modulus via 3D bioprinting, hold great promise for neural regeneration. However, achieving precise control over the fate of neural stem cells (NSCs) to ensure biological functionality remains challenging. Cell behaviors are closely linked to cellular dynamics and cell-matrix mechanotransduction within a 3D microenvironment.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
Group 13 aminoxy complexes of the form (L)E(TEMPO) (TEMPO = 2,2,6,6-tetramethylpiperidine 1-oxyl; L = THF (tetrahydrofuran) or Py (pyridine); E = Al, Ga, In) were prepared and structurally characterized. The complexes (THF)Ga(TEMPO) (1·THF) and (Py)In(TEMPO) (2·Py) are shown to heterolytically cleave H under mild conditions (3 atm, 20 °C, ≤ 1 h). 1·THF reacts reversibly with H to form a formal H-adduct that bears a Ga(iii) hydride site and a protonated TEMPO ligand with concomitant loss of THF, consistent with Ga(iii) and TEMPO functioning as Lewis acid and base, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!