is a major cause of nosocomial antibiotic-associated infectious diarrhea and pseudomembranous colitis. Detection of by anaerobic bacterial culture and/or cytotoxicity assays has been largely replaced by rapid enzyme immunoassays (EIA). However, due to the lack of sensitivity of stool EIA, we developed a multiplex real-time PCR assay targeting the toxin genes . stool samples from hospitalized pediatric patients suspected of having -associated disease were prospectively collected. Three testing modalities were evaluated, including enriched culture, cepheid Xpert and real-time Pcr () on stool samples performed with gene-specific primers and hydrolysis probes. A total of 150 de-identified clinical specimen were analyzed. The sensitivities of stool real-time Pcr were 95% against cepheid Xpert C. difficile and 93% against enriched culture respectively, with a specificity of 97% and 94%. The lower limit of detection of the stool real-time PCR was 0.5 cFU/ml of per reaction for . Direct detection of toxin genes in stool samples by real-time Pcr showed performance comparable to enriched culture. Real-time PCR of DNA from stool samples is a rapid and cost-effective diagnostic modality for patients that should facilitate appropriate patient management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080412 | PMC |
Phytopathology
March 2025
Michigan State University, Dept. Plant, Soil and Microbial Sciences, 105 CIPS, East Lansing, Michigan, United States, 48910;
Oak wilt, caused by the fungal pathogen , spreads via root grafts and insect vectors, threating oaks ( spp.) and chestnuts ( spp.) in the United States.
View Article and Find Full Text PDFEndokrynol Pol
March 2025
Department of Metabolic Endocrinology, Zhuzhou Central Hospital, Zhuzhou, China.
Introduction: The proprotein convertase subtilisin/kexin type 9/lectin-like oxidized low-density lipoprotein receptor-1 (PCSK9/LOX-1) axis plays a crucial role in regulating vascular endothelial cell function, but its specific involvement in type 2 diabetes mellitus (T2DM) remains unclear. This study aims to explore the potential mechanism of the PCSK9/LOX-1 axis in high-glucose (HG)-induced vascular endothelial cell dysfunction.
Material And Methods: Peripheral blood samples were collected from T2DM patients to analyse the correlation between PCSK9 and blood lipid levels.
Endokrynol Pol
March 2025
Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi, China.
Introduction: Thiamine-responsive megaloblastic anaemia syndrome (TRMA) is a rare genetic disease caused by mutations in the SLC19A2 gene that encodes thiamine transporter 1 (THTR-1). The common manifestations are diabetes, anaemia, and deafness. The pathogenic mechanism has not yet been clarified.
View Article and Find Full Text PDFEndokrynol Pol
March 2025
Medical Genetics Department and Prenatal Diagnosis Centre, The Affiliated Hospital of Qingdao University, Qingdao, China.
Background: Congenital hypothyroidism (CH) is the most common neonatal disorder, primarily caused by thyroid dysgenesis (TD). While the genetic cause has been identified in less than 5% of TD cases, there is an urgent need to investigate additional gene mutations that may be responsible. In 2018, TUBB1 was identified as a novel candidate gene associated with TD.
View Article and Find Full Text PDFInt J Endocrinol Metab
October 2024
Sport Physiology Department, Ferdowsi University of Mashhad, Mashhad, Iran.
Background: Obesity is a complex disease that has become increasingly prevalent. While obesity itself is not new, its widespread occurrence is a more recent concern. Stimulating brown adipose tissue (BAT) and promoting the browning of white adipose tissue (bWAT) have shown promise as therapeutic targets to increase energy expenditure and counteract weight gain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!