The timely detection of viremia in HIV-infected patients receiving antiviral treatment is key to ensuring effective therapy and preventing the emergence of drug resistance. In high HIV burden settings, the cost and complexity of diagnostics limit their availability. We have developed a novel complementary metal-oxide semiconductor (CMOS) chip based, pH-mediated, point-of-care HIV-1 viral load monitoring assay that simultaneously amplifies and detects HIV-1 RNA. A novel low-buffer HIV-1 pH-LAMP (loop-mediated isothermal amplification) assay was optimised and incorporated into a pH sensitive CMOS chip. Screening of 991 clinical samples (164 on the chip) yielded a sensitivity of 95% (in vitro) and 88.8% (on-chip) at >1000 RNA copies/reaction across a broad spectrum of HIV-1 viral clades. Median time to detection was 20.8 minutes in samples with >1000 copies RNA. The sensitivity, specificity and reproducibility are close to that required to produce a point-of-care device which would be of benefit in resource poor regions, and could be performed on an USB stick or similar low power device.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5103182PMC
http://dx.doi.org/10.1038/srep36000DOI Listing

Publication Analysis

Top Keywords

cmos chip
8
hiv-1 viral
8
hiv-1
5
novel sensing
4
sensing semiconductor
4
semiconductor point-of-care
4
point-of-care detection
4
detection hiv-1
4
hiv-1 viremia
4
viremia timely
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!