Since the production of printed circuit boards (PCBs) generates wastewater contaminated with heavy metals and organic matter, PCB factories represent potential pollution sites. The wastewater toxicologically tested in this study contained several metals and the most abundant were copper and iron. At two exposure times tested (4 and 24 h) PCB wastewater (PCBW) proved to be cytotoxic (decreased cell viability) and genotoxic (increased comet assay tail intensity and tail moment) to human blood peripheral lymphocytes in vitro, and the oxidative stress parameter (malondialdehyde concentration) was also found to be higher. After application of combined treatment by waste base, ozone and waste sludge methods, concentrations of metals in purified PCBW were below the upper permitted levels and all tested toxicological parameters did not differ compared to the negative control. Taken together, similar methods could be implemented in PCB factories before discharging potentially toxic wastewater into the environment because purified PCBW does not represent a threat from the aspect of cytotoxicity and genotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.10.101DOI Listing

Publication Analysis

Top Keywords

printed circuit
8
pcb factories
8
purified pcbw
8
environmental risk
4
risk assessment
4
assessment wastewaters
4
wastewaters printed
4
circuit board
4
board production
4
production multibiomarker
4

Similar Publications

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.

View Article and Find Full Text PDF

Skin-Integrated Electrogenetic Regulation of Vasculature for Accelerated Wound Healing.

Adv Sci (Weinh)

January 2025

ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.

Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).

View Article and Find Full Text PDF

Harnessing spatiotemporal transformation in magnetic domains for nonvolatile physical reservoir computing.

Sci Adv

January 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore.

Combining physics with computational models is increasingly recognized for enhancing the performance and energy efficiency in neural networks. Physical reservoir computing uses material dynamics of physical substrates for temporal data processing. Despite the ease of training, building an efficient reservoir remains challenging.

View Article and Find Full Text PDF

Sensitivity Analysis of Microstrip Patch Antenna Genres: Slotted and Through-hole Microstrip Patch Antenna.

Biomed Eng Lett

January 2025

MicroSystems Lab (µSL), School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, 110067 India.

This paper demonstrates real-time, label-free, contact-based glucose sensor design of inset-fed Microstrip Patch Antenna (MSPA) genres: Slotted Microstrip Patch Antenna (SMSPA) and Through-hole Microstrip Patch Antenna (THMSPA). In SMSPA, multiple slots are created along the width edge of the patch. In THMSPA, a through-hole is introduced across the antenna including all the layers: patch, substrate and ground conductor of the MSPA.

View Article and Find Full Text PDF

Proteases, an important class of enzymes that cleave proteins and peptides, carry a wealth of potentially useful information. Devices to enable routine and cost effective measurement of their activity could find frequent use in clinical settings for medical diagnostics, as well as some industrial contexts such as detecting on-line biological contamination. In particular, devices that make use of readouts involving magnetic particles may offer distinct advantages for continuous sensing because material they release can be magnetically captured downstream and their readout is insensitive to optical properties of the sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!