Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer's Disease Model.

Cell Rep

Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China. Electronic address:

Published: November 2016

Hippocampal synaptic plasticity is modulated by neuropeptides, the disruption of which might contribute to cognitive deficits observed in Alzheimer's disease (AD). Although pro-opiomelanocortin (POMC)-derived neuropeptides and melanocortin 4 receptor (MC4R) are implicated in hippocampus-dependent synaptic plasticity, how the POMC/MC4R system functions in the hippocampus and its role in synaptic dysfunction in AD are largely unknown. Here, we mapped a functional POMC circuit in the mouse hippocampus, wherein POMC neurons in the cornu ammonis 3 (CA3) activate MC4R in the CA1. Suppression of hippocampal MC4R activity in the APP/PS1 transgenic mouse model of AD exacerbates long-term potentiation impairment, which is alleviated by the replenishment of hippocampal POMC/MC4R activity or activation of hippocampal MC4R-coupled Gs signaling. Importantly, MC4R activation rescues amyloid-β-induced synaptic dysfunction via a Gs/cyclic AMP (cAMP)/PKA/cAMP-response element binding protein (CREB)-dependent mechanism. Hence, disruption of this hippocampal POMC/MC4R circuit might contribute to synaptic dysfunction observed in AD, revealing a potential therapeutic target for the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2016.10.043DOI Listing

Publication Analysis

Top Keywords

hippocampal pomc/mc4r
12
synaptic plasticity
12
synaptic dysfunction
12
pomc/mc4r circuit
8
alzheimer's disease
8
synaptic
6
hippocampal
5
stimulation hippocampal
4
pomc/mc4r
4
circuit alleviates
4

Similar Publications

Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer's Disease Model.

Cell Rep

November 2016

Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China. Electronic address:

Hippocampal synaptic plasticity is modulated by neuropeptides, the disruption of which might contribute to cognitive deficits observed in Alzheimer's disease (AD). Although pro-opiomelanocortin (POMC)-derived neuropeptides and melanocortin 4 receptor (MC4R) are implicated in hippocampus-dependent synaptic plasticity, how the POMC/MC4R system functions in the hippocampus and its role in synaptic dysfunction in AD are largely unknown. Here, we mapped a functional POMC circuit in the mouse hippocampus, wherein POMC neurons in the cornu ammonis 3 (CA3) activate MC4R in the CA1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!