The counterregulatory response to hypoglycemia, which restores normal blood glucose levels to ensure sufficient provision of glucose to the brain, is critical for survival. To discover underlying brain regulatory systems, we performed a genetic screen in recombinant inbred mice for quantitative trait loci (QTL) controlling glucagon secretion in response to neuroglucopenia. We identified a QTL on the distal part of chromosome 7 and combined this genetic information with transcriptomic analysis of hypothalami. This revealed Fgf15 as the strongest candidate to control the glucagon response. Fgf15 was expressed by neurons of the dorsomedial hypothalamus and the perifornical area. Intracerebroventricular injection of FGF19, the human ortholog of Fgf15, reduced activation by neuroglucopenia of dorsal vagal complex neurons, of the parasympathetic nerve, and lowered glucagon secretion. In contrast, silencing Fgf15 in the dorsomedial hypothalamus increased neuroglucopenia-induced glucagon secretion. These data identify hypothalamic Fgf15 as a regulator of glucagon secretion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120348 | PMC |
http://dx.doi.org/10.1016/j.celrep.2016.10.041 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Division of Endocrinology, Metabolism, and Rheumatology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan.
Background/objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is an important common comorbidity in subjects with type 2 diabetes, and liver fibrosis is a factor directly related to its prognosis. Glucagon-like peptide-1 receptor agonists are useful treatment options for MASLD; however, the efficacy of oral semaglutide in treating liver steatosis/fibrosis has not been fully elucidated.
Methods: A secondary analysis of a multicenter, retrospective, observational study investigating the efficacy and safety of oral semaglutide in Japanese subjects with type 2 diabetes in a real-world clinical setting (the Sapporo-Oral SEMA study) was conducted.
Life (Basel)
January 2025
Laboratory of Nervous System Development, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia.
Type 1 diabetes (T1D) is related to the autoimmune destruction of β-cells, leading to their almost complete absence in patients with longstanding T1D. However, endogenous insulin secretion persists in such patients as evidenced by the measurement of plasma C-peptide. Recently, a low level of insulin has been found in non-β islet cells of patients with longstanding T1D, indicating that other islet cell types may contribute to persistent insulin secretion.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany.
Glucagon can increase the force of contraction (FOC) in, for example, canine hearts. Currently, whether glucagon can also increase the FOC via cAMP-increasing receptors in the human atrium is controversial discussed. Glucagon alone did not (up to 1 µM) raise the FOC in human right atrial preparations (HAP).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmacy, University of Limpopo, Mankweng 0727, South Africa.
This narrative review examines the dynamic interplay between carbohydrate intake and diabetes medications, highlighting their combined molecular and clinical effects on glycemic control. Carbohydrates, a primary energy source, significantly influence postprandial glucose regulation and necessitate careful coordination with pharmacological therapies, including insulin, metformin, glucagon-like peptide (GLP-1) receptor agonists, and sodium-glucose cotransporter-2 (SGLT2) inhibitors. Low-glycemic-index (GI) foods enhance insulin sensitivity, stabilize glycemic variability, and optimize medication efficacy, while high-GI foods exacerbate glycemic excursions and insulin resistance.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
As an incretin hormone, Glucagon-like peptide-1 (GLP-1) has obvious effects on blood glucose regulation and weight loss. GLP-1 receptor (GLP-1R) agonists are synthetic products that have similar effects to GLP-1 but are less prone to degradation, and they are widely used in the treatment of type 2 diabetes and obesity. In recent years, different beneficial effects of GLP-1R agonists were discovered, such as reducing ischemia-reperfusion injury, improving the function of various organs, alleviating substance use disorder, affecting tumorigenesis, regulating bone metabolism, changing gut microbiota composition, and prolonging graft survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!