Crosslinked, cryostructured Lactobacillus reuteri monoliths for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.

J Biotechnol

Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden.

Published: January 2017

Crosslinked, cryostructured monoliths prepared from Lactobacillus reuteri cells were evaluated as potential immobilized whole-cell biocatalyst for conversion of glycerol, to potentially important chemicals for the biobased industry, i.e. 3-hydroxypropionaldehyde (3HPA), 3-hydroxypropionic acid (3HP) and 1,3-propanediol (1,3PDO). Glutaraldehyde, oxidized dextran and activated polyethyleneimine/modified polyvinyl alcohol (PEI/PVA) were evaluated as crosslinkers; the latter gave highly stable preparations with maintained viability and biocatalytic activity. Scanning electron microscopy of the PEI/PVA monoliths showed high density of crosslinked cells with wide channels allowing liquid flow through. Flux analysis of the propanediol-utilization pathway, incorporating glycerol/diol dehydratase, propionaldehyde dehydrogenase, 1,3PDO oxidoreductase, phosphotransacylase, and propionate kinase, for conversion of glycerol to the three chemicals showed that the maximum specific reaction rates were -562.6, 281.4, 62.4 and 50.5mg/gh for glycerol consumption, and 3HPA (extracellular), 3HP and 1,3PDO production, respectively. Under optimal conditions using monolith operated as continuous plug flow reactor, 19.7g/L 3HPA was produced as complex with carbohydrazide at a rate of 9.1g/Lh and a yield of 77mol%. Using fed-batch operation, 1,3PDO and 3HP were co-produced in equimolar amounts with a yield of 91mol%. The monoliths embedded in plastic carriers showed high mechanical stability under different modes in a miniaturized plug flow reactor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2016.11.005DOI Listing

Publication Analysis

Top Keywords

crosslinked cryostructured
8
lactobacillus reuteri
8
3-hydroxypropionic acid
8
conversion glycerol
8
plug flow
8
flow reactor
8
cryostructured lactobacillus
4
monoliths
4
reuteri monoliths
4
monoliths production
4

Similar Publications

Designing of economically feasible and recyclable polysaccharide-based materials with thiourea functional groups for removal of specific metal ions such as Ag(I), Au(I), Pb(II) or Hg(II) remains a major challenge for environmental applications. Here, we introduce ultra-lightweight thiourea-chitosan (CSTU) aerogels engineered by combining successive freeze-thawing cycles with covalent formaldehyde-mediated cross-linking and lyophilization. All aerogels exhibited outstanding low densities (0.

View Article and Find Full Text PDF

Crosslinked, cryostructured monoliths prepared from Lactobacillus reuteri cells were evaluated as potential immobilized whole-cell biocatalyst for conversion of glycerol, to potentially important chemicals for the biobased industry, i.e. 3-hydroxypropionaldehyde (3HPA), 3-hydroxypropionic acid (3HP) and 1,3-propanediol (1,3PDO).

View Article and Find Full Text PDF

Cellulose nanofibrils were produced from P. radiata kraft pulp fibers. The nanofibrillation was facilitated by applying 2,2,6,6-tetramethylpiperidinyl-1-oxyl-mediated oxidation as pretreatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!