A strategy for integrated and reconfigurable optical paths based on stacking optical functional films is proposed. It is demonstrated by stacking two liquid crystal polymer q-plates and one quarter-wave plate for vector vortex beams generation. The topological charge and polarization order of generated vector vortex beams can be controlled independently by stacking and reordering different optical films with repeated adhesive ability. It supplies a low-cost, light-weight and versatile technique for reducing the volume of free-space optical system and has a great potential in optical researches and applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.025510DOI Listing

Publication Analysis

Top Keywords

integrated reconfigurable
8
reconfigurable optical
8
optical paths
8
paths based
8
based stacking
8
stacking optical
8
optical functional
8
functional films
8
vector vortex
8
vortex beams
8

Similar Publications

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

IR-Driven Multisignal Conditioning for Multiplex Detection: Thermal-Responsive Triple DNA-Mediated Reconfigurable Photoelectrochemical/Photothermal Dual-Mode Strategy.

ACS Sens

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.

Superior to traditional multiplex photoelectrochemical (PEC) sensors, integrated multitarget assay on a single reconstructive electrode interface is promising in real-time detection through eliminating the need of specialized instrumentation and cumbersome interfacial modifications. Current interface reconstruction approaches including pH modulation and bioenzyme cleavage involve biohazardous and time-consuming operations, which cannot meet the demand for rapid, eco-friendly, and portable detection, which are detrimental to the development of multiplex PEC sensors toward portability. Herein, we report a pioneer work on IR-driven "four-to-one" multisignal conditioning to facile reconfigure electrode interface for multitarget detection via photoelectrochemical/photothermal dual mode.

View Article and Find Full Text PDF

This paper presents a scalable reflective metasurface design optimized for 5G and beyond (B5G) wireless communications, featuring a unique combination of passive metasurface elements. The proposed design emphasizes a less complex structural configuration, facilitating easy scalability and cost-effective fabrication. By implementing a single-layer structure, the metasurface enables straightforward integration with existing B5G infrastructure and demonstrates compatibility with emerging intelligent surface technologies, such as Reconfigurable Intelligent Surfaces (RIS).

View Article and Find Full Text PDF

Hardware implementation of reconfigurable and nonvolatile photoresponsivity is essential for advancing in-sensor computing for machine vision applications. However, existing reconfigurable photoresponsivity essentially depends on the photovoltaic effect of p-n junctions, which photoelectric efficiency is constrained by Shockley-Queisser limit and hinders the achievement of high-performance nonvolatile photoresponsivity. Here, we employ bulk photovoltaic effect of rhombohedral (3R) stacked/interlayer sliding tungsten disulfide (WS) to surpass this limit and realize highly reconfigurable, nonvolatile photoresponsivity with a retinomorphic photovoltaic device.

View Article and Find Full Text PDF

2D MoS-based reconfigurable analog hardware.

Nat Commun

January 2025

School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.

Biological neural circuits demonstrate exceptional adaptability to diverse tasks by dynamically adjusting neural connections to efficiently process information. However, current two-dimension materials-based neuromorphic hardware mainly focuses on specific devices to individually mimic artificial synapse or heterosynapse or soma and encoding the inner neural states to realize corresponding mock object function. Recent advancements suggest that integrating multiple two-dimension material devices to realize brain-like functions including the inter-mutual connecting assembly engineering has become a new research trend.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!