We report on a flow-through optical sensor consisting of a microcapillary with mirrored channels. Illuminating the structure from the side results in a complicated spectral interference pattern due to the different cavities formed between the inner and outer capillary walls. Using a Fourier transform technique to isolate the desired channel modes and measure their resonance shift, we obtain a refractometric detection limit of (6.3 ± 1.1) x 10 RIU near a center wavelength of 600 nm. This simple device demonstrates experimental refractometric sensitivities up to (5.6 ± 0.2) x 10 nm/RIU in the visible spectrum, and it is calculated to reach 1540 nm/RIU with a detection limit of 2.3 x 10 RIU at a wavelength of 1.55 µm. These values are comparable to or exceed some of the best Fabry-Perot sensors reported to date. Furthermore, the device can function as a gas or liquid sensor or even as a pressure sensor owing to its high refractometric sensitivity and simple operation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.024959DOI Listing

Publication Analysis

Top Keywords

detection limit
8
limit riu
8
refractometric
4
refractometric micro-sensor
4
micro-sensor mirrored
4
mirrored capillary
4
capillary resonator
4
resonator report
4
report flow-through
4
flow-through optical
4

Similar Publications

Natural skin receptors use ions as signal carriers, while most of the developed artificial tactile sensors utilize electrons as information carriers. To imitate the biological ionic sensing behavior, here, we present a kind of biomimetic, ionic, and fully passive mechanotransduction mechanism leveraging mechanical modulation of interfacial ionic p-n junction (IPNJ) through microchannels. Sensors based on this mechanism do not rely on an external power supply and can encode external tactile stimuli into highly analogous signal outputs to those of natural skin receptors, in terms of both signal type (i.

View Article and Find Full Text PDF

Molecularly imprinted electrochemical sensor to sensitively detect tetramethylpyrazine in Baijiu.

Analyst

January 2025

Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Tetramethylpyrazine (TMP) is a compound known for its natural health benefits, but current detection methods for TMP are overly expensive and time-consuming. In this study, we developed functional materials with TMP molecular recognition properties using molecularly imprinted technology. As TMP does not produce electrochemical signals in the detection potential range, hexacyanoferrate was selected as a redox probe, combined with the highly conductive polymer PEDOT:PSS to enhance electrode conductivity.

View Article and Find Full Text PDF

The 2024 Zurich perfluorinated compounds (PFCs) summit reiterated the urgent need for non-selective analytical approaches for PFC detection. 19F NMR holds great potential, however, sensitivity limitations lead to long analysis times and/or the possibility of not detecting low concentration species. Steady State Free Precession (SSFP) NMR collects the signal in a steady state regime, allowing 100's of acquisitions in the timespan of a single traditional NMR scan.

View Article and Find Full Text PDF

The detection of cysteine (Cys) and homocysteine (Hcy) in biological fluids has great significance for early diagnosis, including Alzheimer's and Parkinson's disease. The simultaneous determination of Cys and Hcy with a single probe is still a huge challenge. To enlarge the differences in space structure (line and ring) and energy (-721.

View Article and Find Full Text PDF

Background: Feline diarrhea is a common digestive tract disease in clinical practice, with watery feces as the main clinical manifestation. There are numerous pathogenic factors causing feline diarrhea, among which viral infections are prevalent, and feline panleukopenia virus (FPV) is the most common pathogen. In recent years, a variety of novel viruses have been detected in the intestines of cats with diarrhea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!