Single-molecule localization microscopy (SMLM) has become an essential tool for examining a wide variety of biological structures and processes. However, the relatively long acquisition time makes SMLM prone to drift-induced artifacts. Here we report an optical design with an electrically tunable lens (ETL) that actively stabilizes a SMLM in three dimensions and nearly eliminates the mechanical drift (RMS ~0.7 nm lateral and ~2.7 nm axial). The bifocal design that employed fiducial markers on the coverslip was able to stabilize the sample regardless of the imaging depth. The effectiveness of the ETL was demonstrated by imaging endosomal transferrin receptors near the apical surface of B-lymphocytes at a depth of 8 µm. The drift-free images obtained with the stabilization system showed that the transferrin receptors were present in distinct but heterogeneous clusters with a bimodal size distribution. In contrast, the images obtained without the stabilization system showed a broader unimodal size distribution. Thus, this stabilization system enables a more accurate analysis of cluster topology. Additionally, this ETL-based stabilization system is cost-effective and can be integrated into existing microscopy systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.022959 | DOI Listing |
J Mol Model
January 2025
Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.
Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
Alopecia, a common dermatological condition, poses significant psychological and social challenges. Despite the availability of various treatments, their efficacy is often limited by poor bioavailability and delivery challenges. Nanostructured lipid carriers have emerged as promising advanced drug delivery systems for alopecia treatment due to their ability to encapsulate both hydrophilic and lipophilic compounds, enhancing their stability, solubility, and controlled release.
View Article and Find Full Text PDFJ Mol Model
January 2025
Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.
Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
We propose and prioritize important outcome domains that should be considered for future research investigating long-term outcomes (LTO) after new onset refractory status epilepticus (NORSE). The study was led by the international NORSE Institute LTO Working Group. First, literature describing the LTO of NORSE survivors was identified using a PubMed search and summarized to identify knowledge gaps.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!