Nonmechanical beam steering is a rapidly growing branch of adaptive optics with applications such as light detection and ranging, imaging, optical communications, and atomic physics. Here, we present an innovative technique for one- and two-dimensional beam steering using multiple tunable liquid lenses. We use an approach in which one lens controls the spot divergence, and one to two decentered lenses act as prisms and steer the beam. Continuous 1D beam steering was demonstrated, achieving steering angles of ±39° using two tunable liquid lenses. The beam scanning angle was further enhanced to ±75° using a fisheye lens. By adding a third tunable liquid lens, we achieved 2D beam steering of ±75°. In this approach, the divergence of the scanning beam is controlled at all steering angles.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.023798DOI Listing

Publication Analysis

Top Keywords

beam steering
20
liquid lenses
12
tunable liquid
12
beam
8
nonmechanical beam
8
steering angles
8
steering
7
wide-angle nonmechanical
4
liquid
4
steering liquid
4

Similar Publications

A silicon photonics optical phased array with a two-dimensional matrix of antennas is experimentally demonstrated in which the unitary antennas are optimized such that light can be emitted over a high fraction of the overall array surface. This design strategy can be used to obtain a low divergence emitted beam containing a significant fraction of the total emitted power, at the expense of a reduced beam steering range. This type of device can be suited to phase front correction in optical wireless communications systems.

View Article and Find Full Text PDF

Terahertz reconfigurable intelligent surfaces (RIS) stand out from conventional phased arrays thanks to their unique electromagnetic properties and intelligent interconnect paradigms. They are a vital technology for terahertz wireless communication and radar detection systems. Compared with 1-bit coding metasurfaces, 2-bit coding metasurfaces offer significant advantages such as single beam steering and reduced quantization errors.

View Article and Find Full Text PDF

A reconfigurable holographic metasurface (HM) with multifunctional modulation of radiation and scattering for conformal applications is designed in this paper. Based on optical holography theory, a holographic conformal modulation mechanism is proposed, and the conformal surface impedance distribution of HM is derived. To illustrate this mechanism, the designed conformal reconfigurable HM is used to demonstrate a series of radiation and scattering modulation functions, with its reconfigurable property enabling dynamic beam control.

View Article and Find Full Text PDF

Laser communications (lasercom) can enable more efficient and higher bandwidth communications than conventional radio frequency (RF) systems, but requires more sophisticated pointing and tracking (PAT) systems to acquire and maintain links. Liquid lens arrays can provide compact, nonmechanical beam steering as an alternative to fast-steering mirrors and mechanical gimbals. An array of two liquid lenses offset in perpendicular axes along with a third on-axis lens in the array are used for beam steering and divergence control, respectively.

View Article and Find Full Text PDF

Digital coding metasurfaces have gained considerable attention for their potential to bridge physical and information sciences. However, existing metasurfaces are often restricted to either phase-only or amplitude-only control and typically operate within a single frequency band or polarization, limiting their functionality in advanced electromagnetic applications. This study proposes a dual-band metasurface with independent amplitude-phase coding for polarization-controlled beam manipulation, addressing these limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!