Turbulence poses challenges in many atmospheric and underwater surveillance applications. The compressive line sensing (CLS) active imaging scheme has been demonstrated in simulations and test tank experiments to be effective in scattering media such as turbid coastal water, fog, and mist. The CLS sensing model adopts the distributed compressive sensing theoretical framework that exploits both intrasignal sparsity and the highly correlated nature of adjacent areas in a natural scene. During sensing operation, the laser illuminates the spatial light modulator digital micromirror device to generate a series of one-dimensional binary sensing patterns from a codebook to encode the current target line segment. A single element detector photomultiplier tube acquires target reflections as the encoder output. The target can then be recovered using the encoder output and a predicted on-target codebook that reflects the environmental interference of original codebook entries. In this work, we investigated the effectiveness of the CLS imaging system in a turbulent environment. The development of a compact CLS prototype will be discussed, as will a series of experiments using various turbulence intensities at the Naval Research Lab's Simulated Turbulence and Turbidity Environment. The experimental results showed that the time-averaged measurements improved both the signal-to-noise radio and the resolution of the reconstructed image in the extreme turbulence environment. The contributing factors for this intriguing and promising result will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.55.008523DOI Listing

Publication Analysis

Top Keywords

compressive sensing
12
imaging system
8
system turbulent
8
turbulent environment
8
encoder output
8
will discussed
8
sensing
6
experimental study
4
study compressive
4
sensing imaging
4

Similar Publications

Purpose: To develop a rapid, high-resolution and distortion-free quantitative $R_{2}^{*}$ mapping technique for fetal brain at 3 T.

Methods: A 2D multi-echo radial FLASH sequence with blip gradients is adapted for fetal brain data acquisition during maternal free breathing at 3 T. A calibrationless model-based reconstruction with sparsity constraints is developed to jointly estimate water, fat, $R_{2}^{*}$ and $B_{0}$ field maps directly from the acquired k-space data.

View Article and Find Full Text PDF

Compressive electron backscatter diffraction imaging.

J Microsc

January 2025

Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK.

Electron backscatter diffraction (EBSD) has developed over the last few decades into a valuable crystallographic characterisation method for a wide range of sample types. Despite these advances, issues such as the complexity of sample preparation, relatively slow acquisition, and damage in beam-sensitive samples, still limit the quantity and quality of interpretable data that can be obtained. To mitigate these issues, here we propose a method based on the subsampling of probe positions and subsequent reconstruction of an incomplete data set.

View Article and Find Full Text PDF

Transferring knowledge learned from standard GelSight sensors to other visuotactile sensors is appealing for reducing data collection and annotation. However, such cross-sensor transfer is challenging due to the differences between sensors in internal light sources, imaging effects, and elastomer properties. By understanding the data collected from each type of visuotactile sensors as domains, we propose a few-sample-driven style-to-content unsupervised domain adaptation method to reduce cross-sensor domain gaps.

View Article and Find Full Text PDF

Today, huge amounts of time series data are sensed continuously by AIoT devices, transmitted to edge nodes, and to data centers. It costs a lot of energy to transmit these data, store them, and process them. Data compression technologies are commonly used to reduce the data size and thus save energy.

View Article and Find Full Text PDF

Pultruded carbon fiber-reinforced composites are attractive to the wind energy industry due to the rapid production of highly aligned unidirectional composites with enhanced fiber volume fractions and increased specific strength and stiffness. However, high volume carbon fiber manufacturing remains cost-prohibitive. This study investigates the feasibility of a pultruded low-cost textile carbon fiber-reinforced epoxy composite as a promising material in spar cap production was undertaken based on mechanical response to four-point flexure loading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!