Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a setup capable of overcoming the saturation output power of semiconductor optical amplifiers operating in the pulsed regime. The concept is to couple different time delays to orthogonal polarization modes, amplify the pulses multiplexed in time, and use the polarization information to recombine them into a single high-power optical pulse. Making use of a single amplifier and two polarizing beam splitters, we were able to amplify pulses with as much as 1.9 dB above the saturation output power of the device. We also show that the method is scalable if any number of polarizing beam splitters is available, where each extra device contributes roughly 1.9 dB to the overall above-saturation amplification factor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.55.007878 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!