Heterogeneous wireless sensor networks (HWSNs) are widely adopted in structural health monitoring systems due to their potential for implementing sophisticated algorithms by integrating a diverse set of devices and improving a network's sensing performance. However, deploying such a HWSN is still in a challenge due to the heterogeneous nature of the data and the energy constraints of the network. To respond to these challenges, an optimal deployment framework in terms of both modal information quality and energy consumption is proposed in this study. This framework generates a multi-objective function aimed at maximizing the quality of the modal information identified from heterogeneous data while minimizing the consumption of energy within the network at the same time. Particle swarm optimization algorithm is then implemented to seek solutions to the function effectively. After laying out the proposed sensor-optimization framework, a methodology is present to determine the clustering of the sensors to further conserve energy. Finally, a numerical verification is performed on a four-span pre-stressed reinforced concrete box-girder bridge. Results show that a set of strategically positioned heterogeneous sensors can maintain a balanced trade-off between the modal information accuracy and energy consumption. It is also observed that an appropriate cluster-tree network topology can further achieve energy saving in HWSNs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134524PMC
http://dx.doi.org/10.3390/s16111865DOI Listing

Publication Analysis

Top Keywords

heterogeneous wireless
8
wireless sensor
8
structural health
8
health monitoring
8
energy consumption
8
energy
6
energy-efficient heterogeneous
4
sensor deployment
4
deployment multiple
4
multiple objectives
4

Similar Publications

The widespread use of wireless communication technologies has increased human exposure to radiofrequency electromagnetic fields (RF-EMFs). Considering the brain's close proximity to mobile phones and its entirely electrical transmission network, it emerges as the organ most profoundly impacted by the RF field. This study aims to investigate the potential effects of RF radiation on cell viability, apoptosis, and gene expressions in glioblastoma cells (U118-MG) at different exposure times (1, 24, and 48 h).

View Article and Find Full Text PDF

System-level wearable electronics require to be flexible to ensure conformal contact with the skin, but they also need to integrate rigid and bulky functional components to achieve system-level functionality. As one of integration methods, folding integration offers simplified processing and enhanced functionality through rigid-soft region separation, but so far, it has mainly been applied to modality of electrical sensing and stimulation. This paper introduces a vialess heterogeneous skin patch with multi modalities that separates the soft region and strain-robust region through folded structure.

View Article and Find Full Text PDF

The rapid development of flexible electronics necessitates simplified processes that integrate heterogeneous materials and structures. In this study, laser engraving is combined with electrochemical deposition (ECD) to directly fabricate various micro/nano-structured components and flexible electronic circuits. A theoretical framework and simulation model are developed to design the on-demand ECD on laser induced graphene (LIG), enabling the generation of multi-scale copper (Cu) materials with controllable oxidation states.

View Article and Find Full Text PDF

Recently, massive intelligent applications have emerged for the smart grid (SG), such as inspection and sensing. To support these applications, there have been high requirements on wireless communication for the SG, especially in remote areas. To tackle these challenges, a UAV-assisted heterogeneous wireless network is proposed in this paper for the SG, where multiple UAVs and a macro base station collaboratively provide a wide range of communication services.

View Article and Find Full Text PDF

As proximity-aware services among devices such as sensors, IoT devices, and user equipment are expected to facilitate a wide range of new applications in the beyond 5G and 6G era, managing heterogeneous environments with diverse node capabilities becomes essential. This paper analytically models and characterizes the performance of heterogeneous random access-based wireless mutual broadcast (RA-WMB) with distinct transmit (Tx) power levels, leveraging a marked Poisson point process to account for nodes' various Tx power. In particular, this study enables the performance of RA-WMB with heterogeneous Tx power to be represented in terms of the performance of RA-WMB with a common Tx power by deriving an equivalent Tx power based on the probability distribution of heterogeneous Tx power and the path loss exponent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!