Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (T) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100-200 kHz and in the temperature range of 25-300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5101497 | PMC |
http://dx.doi.org/10.1038/srep36434 | DOI Listing |
J Colloid Interface Sci
February 2025
School of Chemical Engineering, Northwest University, Xi'an 710069, China. Electronic address:
High performance film capacitor has attracted widespread attention due to their increasing applications in electronic devices. However, the insufficient dielectric properties of dielectrics in capacitors severely restrict their practical application. In this work, the dielectric performances of polyarylene ether nitrile (PEN) are effectively enhanced by the synthesizing and employing of carboxylated PEN (CPEN) modified one-dimensional (1D) strontium barium titanate nanorod (BSTNR) (CPEN@BSTNR), as well as applying of hot stretching technique.
View Article and Find Full Text PDFACS Macro Lett
November 2024
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
JACS Au
October 2024
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Competitive sorption enables the emergent phenomenon of enhanced CO-based selectivities for gas separation membranes when using microporous polymers with primary amines. However, strong secondary forces in these polymers through hydrogen bonding results in low solvent solubility, precluding standard solution processing approaches to form these polymers into membrane films. Herein, we circumvent these manufacturing constraints while maintaining competitive-sorption enhancements by synthesizing eight representative microporous poly(arylene ether)s (PAEs) with tertiary amines.
View Article and Find Full Text PDFSmall
January 2025
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
With the increasing application of electronic devices, absorption-dominated electromagnetic interference shielding materials (EMISM) have garnered significant attention for preventing secondary electromagnetic pollution. In this study, polyethyleneimine (PEI)-modified MXene (PEI@MXene) is fabricated and achieved its controlled distribution on the pore walls of polyarylene ether nitrile (PEN) porous films via the phase inversion method (PIM) to obtain a closed porous skeleton of MXene on the pore walls (CPS-MPW). The resulting PEI@MXene/PEN composite film (CFx) exhibited absorption-dominated EMIS efficiency (EMISE).
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauky 46, Kyiv 03028, Ukraine.
In this paper, we give an overview of novel main-chain azobenzene-based fluorinated poly(arylene ether)s with different content of azo groups, aiming at providing a better understanding of the link between a number of N═N bonds and the macroscopic response of the material. We discuss chemical synthesis and molecular structure and report on a comprehensive analysis of the polymer properties, thermal behavior, and mechanical strength. We show that a higher content of azobenzene moieties reduces the mechanical strength of the polymer materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!