Analysis of the Functionality of the Mitotic Checkpoints.

Methods Mol Biol

Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy.

Published: January 2018

During cell division the main goal of the cell is to produce two daughter cells with the same genome as the mother, i.e., maintain its genetic stability. Since this issue is essential to preserve the cell ability to proliferate properly, all eukaryotic cells have developed several pathways, called mitotic checkpoints, that regulate mitotic entry, progression, and exit in response to different cellular signals. Given the evolutive conservation of mechanisms and proteins involved in the cell cycle control from yeast to humans, the budding yeast S. cerevisiae has been very helpful to gain insight in these complex regulations. Here, we describe how the checkpoint can be activated and which cellular phenotypes can be used as markers of checkpoint activation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6502-1_16DOI Listing

Publication Analysis

Top Keywords

mitotic checkpoints
8
analysis functionality
4
functionality mitotic
4
cell
4
checkpoints cell
4
cell division
4
division main
4
main goal
4
goal cell
4
cell produce
4

Similar Publications

Canine oral melanoma (OM) exhibits poor prognosis and limited treatment options. The success of immune checkpoint inhibitors (ICIs) in human melanoma has driven interest in similar therapeutic approaches in the dog, although the immunosuppressive mechanisms adopted by canine OM remain unclear. This study aimed to evaluate the expression of the immune checkpoints PD-1/PD-L1 and CTLA-4 by RNAscope in situ hybridization (ISH) in canine OM, to investigate their expression pattern and explore their potential role in melanoma progression.

View Article and Find Full Text PDF

Errors during cell division lead to aneuploidy, which is associated with genomic instability and cell transformation. In response to aneuploidy, cells activate the tumour suppressor p53 to elicit a surveillance mechanism that halts proliferation and promotes senescence. The molecular sensors that trigger this checkpoint are unclear.

View Article and Find Full Text PDF

Mast cell tumours (MCTs) are the most frequent cutaneous neoplasia of the dog, and they have very variable biological behaviour and survival times. Surgery is still the best treatment, and despite the several adjuvant therapies described, many cases are very aggressive and resistant to these treatments making it urgent to find new therapeutic targets. Nowadays, immunotherapy targeting immune checkpoints has been described as a complementary treatment for several human cancers, but it is still very scarcely studied in veterinary medicine.

View Article and Find Full Text PDF

ATR inhibition promotes synergistic antitumor effect in platinum-resistant pancreatic cancer.

Biochim Biophys Acta Mol Basis Dis

December 2024

Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea; Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea. Electronic address:

Background: Oxaliplatin is a commonly used platinum-based chemotherapy drug for patients with pancreatic cancer (PC). Drug resistance is a major challenge in PC treatment, underscoring the urgent need for new approaches. Targeting DNA damage repair, one of the factors responsible for platinum resistance, is an attractive strategy to overcome drug resistance.

View Article and Find Full Text PDF

Cells evoke the DNA damage checkpoint (DDC) to inhibit mitosis in the presence of DNA double-strand breaks (DSBs) to allow more time for DNA repair. In budding yeast, a single irreparable DSB is sufficient to activate the DDC and induce cell cycle arrest prior to anaphase for about 12-15 hr, after which cells 'adapt' to the damage by extinguishing the DDC and resuming the cell cycle. While activation of the DNA damage-dependent cell cycle arrest is well understood, how it is maintained remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!