Atherosclerosis, a chronic inflammatory disease of the blood vessels, is one of the most common causes of morbidity and mortality world-wide. Involvement of in atherosclerosis is supported by observations from epidemiological, clinical, immunological, and molecular studies. Previously we reported that vesicles have a much higher invasive efficiency than their originating cells. Here, we further compare the role of cells and their vesicles in expression of chemoattractant proteins including CXCL1, CXCL2, and CXCL8, and adhesive molecules such as E-selectin in human umbilical vein endothelial cells (HUVECs). Both 33277 cells and vesicles were able to up-regulate expression of these molecules, while the vesicles acted as more potent inducers of the inflammatory response associated with the development of atherosclerosis, consequently resulting in significant monocyte adhesion to a monolayer of HUVECs. Interestingly, we found that elevated expression of CXCL8 and E-selectin in endothelial cells induced by correlated with the invasive ability of cells and vesicles. Non-invasive bacterial cells and vesicles had no effect on expression of these genes. This study highlights the potential risk of cells and vesicles in initiation of atherosclerosis and provides a potential target for the development of novel therapeutics against bacteria-associated atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078693 | PMC |
http://dx.doi.org/10.3389/fcimb.2016.00139 | DOI Listing |
Eur Heart J
January 2025
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China.
Background And Aims: Lackluster results from recently completed gene therapy clinical trials of VEGF-A delivered by viral vectors have heightened the need to develop alternative delivery strategies. This study aims to demonstrate the pre-clinical efficacy and safety of extracellular vesicles (EVs) loaded with VEGF-A mRNA for the treatment of ischaemic vascular disease.
Methods: After encapsulation of full-length VEGF-A mRNA into fibroblast-derived EVs via cellular nanoporation (CNP), collected VEGF-A EVs were delivered into mouse models of ischaemic injury.
Virulence
December 2025
Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea.
(APP) is a significant pathogen in the swine industry, leading to substantial economic losses and highlighting the need for effective vaccines. This study evaluates the potential of APP-derived extracellular vesicles (APP-EVs) as a vaccine candidate compared to the commercial Coglapix vaccine. APP-EVs, isolated using tangential flow filtration (TFF) and cushioned ultracentrifugation, exhibited an average size of 105 nm and a zeta potential of -17.
View Article and Find Full Text PDFScand J Med Sci Sports
January 2025
Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period.
View Article and Find Full Text PDFAlzheimer's disease (AD) is an age-related neurodegenerative pathology. Brain-derived extracellular vesicles (EVs) have been demonstrated to be implicated in AD pathogenesis by facilitating the propagation of Tau, amyloid-β and inflammatory cytokines. However, the impact of peripheral EVs (pEVs) in AD pathogenesis remains poorly investigated.
View Article and Find Full Text PDFJ Extracell Biol
January 2025
Cell Biology Unit & Platform for Imaging Cells and Tissues, de Duve Institute UCLouvain Brussels Belgium.
The extracellular vesicle release in red blood cell concentrates reflects progressive accumulation of storage lesions and could represent a new measure to be implemented routinely in blood centres in addition to haemolysis. Nevertheless, there is currently no standardized isolation protocol. In a previous publication, we developed a reproducible ultracentrifugation-based protocol (20,000 × protocol) that allows to classify red blood cell concentrates into three cohorts according to their vesiculation level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!