Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Mechanical properties and cyto-compatibility of a composite scaffold which possessed negative (-) Poisson's ratio (NPR) was investigated for effective load transfer from auxetic scaffold to cell.
Methods: Organic/inorganic composite scaffolds were prepared by mixing hydroxyapatite (HA) to poly(lactide-co-glycolide) (PLGA). To induce NPR in composite scaffold, 3-directional volumetric compression was applied during the scaffold fabrication at adequate temperature(60°C). The pore size of scaffold ranged between 355-400 μm.
Results: Poisson's ratios of NPR scaffolds and control scaffolds were -0.07 and 0.16 at 10 % strain. For stable physical stimulating to loaded cells, ceramic/polymer composite scaffold was prepared by incorporating HA in PLGA to increase mechanical strength. Compressive strength of the HA/PLGA composite scaffold (15 wt. % HA to PLGA) was about 21.7 % higher than that of PLGA-only scaffold. The recovery rates of the NPR composite scaffold after applying compression in the dry and wet states were 90 % and 60 %, respectively. Also the composite scaffold was shown to have better hydrophilicity (61.9°) compared to the PLGA-only scaffolds (65.3°). Cell proliferation of osteoblast-like cell line (MG-63) in the composite scaffold was 20 % higher than in PLGA-only scaffold at static compressive stimulation. For dynamic compressive stimulation (15 min cyclic interval), cell proliferation in the composite scaffold was 2 times higher than that of in PLGA-only scaffold. In conclusion, NPR composite (HA/PLGA) scaffold was effective in isotropic compressive load delivery for osteogenic cell proliferation.
Conclusion: This composite scaffold with stimulation can be used as tissue engineered scaffold and dynamic cell culture system for bone tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098278 | PMC |
http://dx.doi.org/10.1186/s40824-016-0079-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!