AI Article Synopsis

  • * Marine sponges and tunicates are key sources of novel compounds that are crucial for drug discovery, with many of these compounds containing nitrogen and falling under non-ribosomal peptides (NRPs) or mixed polyketide-NRP categories.
  • * Several of these pharmacologically active NRPs are in clinical trials aimed at developing new treatments for diseases such as cancer, neurodegenerative disorders, inflammation, and infections.

Article Abstract

Marine biodiversity is recognized by a wide and unique array of fascinating structures. The complex associations of marine microorganisms, especially with sponges, bryozoans, and tunicates, make it extremely difficult to define the biosynthetic source of marine natural products or to deduce their ecological significance. Marine sponges and tunicates are important source of novel compounds for drug discovery and development. Majority of these compounds are nitrogen containing and belong to non-ribosomal peptide (NRPs) or mixed polyketide-NRP natural products. Several of these peptides are currently under trial for developing new drugs against various disease areas, including inflammatory, cancer, neurodegenerative disorders, and infectious disease. This review features pharmacologically active NRPs from marine sponge and tunicates based on their biological activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078478PMC
http://dx.doi.org/10.3389/fphar.2016.00333DOI Listing

Publication Analysis

Top Keywords

marine sponge
8
sponge tunicates
8
natural products
8
marine
6
pharmacological potential
4
potential non-ribosomal
4
non-ribosomal peptides
4
peptides marine
4
tunicates
4
tunicates marine
4

Similar Publications

Spectroscopy-guided isolation of extracts of the Tongan marine sponge cf. (Lamarck, 1814) has resulted in the reisolation of the labdane diterpenoid luakuliide A () and one new congener, luakulialactam A (). In addition to establishing the absolute configuration of , synthetic modifications to the luakuliide framework at key positions has created a set of six derivatives (-) which were used to interrogate a structure-activity relationship relating to the immunomodulatory effects of luakuliide A.

View Article and Find Full Text PDF

Updated range distribution of the non-native Asian green mussel (Linnaeus, 1758) at Guanabara Bay, Rio de Janeiro, Brazil.

PeerJ

December 2024

Marine Biotechnology Department, Instituto de Estudos do Mar Almirante Paulo Moreira, Arraial do Cabo, Rio de Janeiro, Brazil.

Guanabara Bay, located at Rio de Janeiro, Brazil, is a highly urbanized and polluted estuary that houses different port areas, shipyards, and marinas of intense maritime traffic. This infrastructure is widely associated with the introduction and spread of non-native sessile species. A rapid assessment of non-native benthic sessile species conducted in the bay in late 2022 across 19 sites identified a total of 83 taxa, both native and non-native, classified into the following main groups: one Cyanophyta, 13 Macroalgae, 14 Porifera, 11 Cnidaria, six Bryozoa, five Annelida, 10 Mollusca, six Crustacea, 10 Echinodermata, and seven Ascidiacea.

View Article and Find Full Text PDF

Skin wounds are extremely frequent injuries related to many etiologies. They are a burden on healthcare systems worldwide. Skin dressings are the most popular therapy, and collagen is the most commonly used biomaterial, although new sources of collagen have been studied, especially spongin-like from marine sponges (SPG), as a promising source due to a similar composition to vertebrates and the ability to function as a cell-matrix adhesion framework.

View Article and Find Full Text PDF

The Paradox of Antimalarial Terpenoid Isonitrile Biosynthesis Explained. Proposal of Cyanoformate as an NC Delivery Vector.

J Nat Prod

December 2024

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States.

Marine sponge diterpenoid isonitriles are exceptional nitrogenous natural products that exhibit antiplasmodial activity. Their biosynthesis presents a biosynthetic puzzle: how do the elements of NC engage terpenyl carbocations in isoprenoid secondary metabolism, and what is the biosynthetic precursor of the NC group? Cyanoformic acid (NC-COOH, ) is proposed as a plausible delivery vehicle of NC that resolves a paradox in the commonly held proposition that an inorganic cyanide anion, CN, terminates terpenoid isonitrile (TI) biosynthesis. DFT calculations of NC-COOH and its conjugate base, cyanoformate, NC-COO (), support high nucleophilicity at N and explain bond-forming constitutionality: attack at N and formation of an isonitrile over its nitrile isomer.

View Article and Find Full Text PDF

Identification of α-galactosylceramide as an endogenous mammalian antigen for iNKT cells.

J Exp Med

February 2025

Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.

Invariant natural killer T (iNKT) cells are unconventional T cells recognizing lipid antigens in a CD1d-restricted manner. Among these lipid antigens, α-galactosylceramide (α-GalCer), which was originally identified in marine sponges, is the most potent antigen. Although the presence of α-anomeric hexosylceramide and microbiota-derived branched α-GalCer is reported, antigenic α-GalCer has not been identified in mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: