Thiamine (vitamin B1) deficiency in the brain has been implicated in the development of dementia and symptoms of depression. Indirect evidence suggests that thiamine may contribute to these pathologies by controlling the activities of glycogen synthase kinase (GSK)-3β. While decreased GSK-3β activity appears to impair memory, increased GSK-3β activity is associated with the distressed/depressed state. However, hitherto direct evidence for the effects of thiamine on GSK-3β function has not been reported. Here, we administered thiamine or, the more bioavailable precursor, benfotiamine at 200mg/kg/day for 2weeks to C57BL/6J mice, to determine whether treatment might affect behaviours that are known to be sensitive to GSK-3β activity and whether such administration impacts on GSK-3β expression within the brain. The mice were tested in models of contextual conditioning and extinction, a 5-day rat exposure stress test, and a modified swim test with repeated testing. The tricyclic antidepressant imipramine (7.5mg/kg/day), was administered as a positive control for the effects of thiamine or benfotiamine. As for imipramine, both compounds inhibited the upregulation of GSK-3β induced by predator stress or repeated swimming, and reduced floating scores and the predator stress-induced behavioural changes in anxiety and exploration. Coincident, thiamine and benfotiamine improved learning and extinction of contextual fear, and the acquisition of the step-down avoidance task. Our data indicate that thiamine and benfotiamine have antidepressant/anti-stress effects in naïve animals that are associated with reduced GSK-3β expression and conditioning of adverse memories. Thus thiamine and benfotiamine may modulate GSK-3β functions in a manner that is dependent on whether the contextual conditioning is adaptive or maladaptive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pnpbp.2016.11.001 | DOI Listing |
J Nutr Metab
September 2024
Department of Nutrition Federal University of Triângulo Mineiro, Uberaba, MG, Brazil.
Background: Benfotiamine, a synthetic analog of thiamine, offers greater bioavailability compared to other thiamine salts and increases thiamine stores upon oral intake. Thiamine is essential for energy metabolism. This study aimed to evaluate the effects of oral benfotiamine supplementation on energy metabolism, particularly the Krebs cycle function, in the muscle of endurance-trained mice, and to assess its impact on endurance performance.
View Article and Find Full Text PDFBiochemistry (Mosc)
July 2024
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
J Mol Histol
October 2024
Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
Gastric ulcers are a common gastrointestinal disorder associated with significant morbidity and mortality. It can also increase the risk of gastric cancer. This study aimed to investigate the effect of benfotiamine on experimentally-induced gastric ulcers in male rats.
View Article and Find Full Text PDFPLoS One
July 2024
Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Shushan District, Hefei, Anhui Province, People's Republic of China.
The pursuit of drugs and methods to safeguard dopaminergic neurons holds paramount importance in Parkinson's disease (PD) research. Benfotiamine (BFT) has demonstrated neuroprotective properties, yet its precise mechanisms in PD remain elusive. This study investigated BFT's potential protective effects against dopamine neuron damage in a PD animal model and the underlying mechanisms.
View Article and Find Full Text PDFACS Chem Neurosci
August 2024
Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil.
Alzheimer's disease (AD) is a complex neurodegenerative process, also considered a metabolic condition due to alterations in glucose metabolism and insulin signaling pathways in the brain, which share similarities with diabetes. This study aimed to investigate the therapeutic effects of benfotiamine (BFT), a vitamin B1 analog, in the early stages of the neurodegenerative process in a sporadic model of Alzheimer's-like disease induced by intracerebroventricular injection of streptozotocin (STZ). Supplementation with 150 mg/kg of BFT for 7 days reversed the cognitive impairment in short- and long-term memories caused by STZ in rodents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!